7€y vn AND QUEST-ORIENTED LEARNING

A Dissertation
Presented to
the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy
Computer Science

by
Sarah Ruth Matzko
August 2007

Accepted by:
Dr. Robert Geist, Committee Chair
Dr. Timothy Davis
Dr. Pradip Srimani
Dr. Andrew Duchowski

www.manharaa.com

UMI Number: 3274327

®

UMI

UMI Microform 3274327

Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, M| 48106-1346

www.manharaa.com

Abstract

A new approach for teaching undergraduate computer scanoses is presented. A general teach-
ing approach that is its basis is also described. Summanggaides to several introductory courses are

provided. Results from the use of the curriculum are preskrdnd other applications of the approach are

suggested.

www.manharaa.com

Acknowledgments

I would like to thank the members of the curriculum commiti@eallowing thereyvn approach to
be used with Clemson University students. Also, | thank tigpsrtive members of the Clemson University
Computer Science faculty for their willingness to adopttBevn approach and for their constructive feed-
back. | greatly appreciate the dedication of the membersyofommittee to the success tdyvn and their
creative ideas and advice. | thank my family for believingdudd complete my degree and Nick, whose
certainty in my abilities convinced me that | would succeed.

This work was supported in part by the CISE Directorate ofih®. National Science Foundation

under award EIA-0305318.

www.manharaa.com

Table of Contents

Title Page e e i
AbStract L e ii
Acknowledgments L e e e e iii
Listof Tables e e Vi
Listof Figures e e e e e e vii
Listof Algorithms e iX
1 Introduction e 1
2 Background 2
2.1 Digital Production ArtsDegree e 2
2.2 Raytracingina Second-YearCourse i v v it mm e 3
3 Curriculum . . e 9
3.1 Educational Goal e e 9
3.2 Problem e e 10
3.3 Curriculum Structure e e 11
3.4 Educational Approach e 12
4 RelatedWork e 19
4.1 Semester-Long Projects in Introductory Courseso 19
4.2 GraphicsinIntroductory Courses L e e 20
5 Implementation L e 22
5.1 CoursePhases e 22
5.2 Supporting Features e e 34
5.3 Introductory Language Selection e 41
6 Adaptations to Other Environments o 47
6.1 Adaptationto SmallColleges e 47
6.2 Adaptationto an Upper-LevelCourse iiir i 49
7 Resultsand Evaluation L e e 53
7.1 The Original, Second-Year Raytracing Course (215) 53
7.2 ComputerSciencel e e 59
7.3 ComputerSciencell e e 69
7.4 Second-Year Data Structures Course (212) oo 74
iv

www.manaraa.com

7.5 Second-Year, Tools and Techniques for Software Dewsdop (215) 77

7.6 Retention e e e e 80
7.7 Observations e e 81
AppendiCes e e e e e 83
A CSLIGUIde. e e 84
B CS2Guide. e 136
C Algorithms and Data Structures Course Guide« v v oo oL 225

D Tools and Techniques for Software DevelopmentGuide 230

Bibliography e e 273

www.manharaa.com

List of Tables

7.1 2005101 COMPAriSON v v v i i e e e e e 68
7.2 2006-2007 101 Walker-Fraser SUIVeYS o v i it e e 69
7.3 2006 Student Perceptionsof 102 e 72
7.4 2006102 Skills Comparison e e e 73
7.5 2006102 COMPAriSON v v v v it e e e e e e 73
7.6 2007 Walker-Fraser Surveys of raytracing Courses 74
7.7 2007 215 Walker-FraserResults L 80
7.8 Retention e 81

Vi

www.manharaa.com

List of Figures

2.1
6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

2002 CPSC 215 Phase Il Student Renderings. e v oo oL 7
Fully rendered image of the Civil War-era Hunley Submeri 51
2002 CPSC 215 Example Student Renderings. 54
2004 CPSC 215 Example Student Renderings. 56
2003-2004 Pilot 215 Course Relevance o oo i e e 57
2003-2004 Pilot 215 Graphics Interest 57
2003-2004 Pilot 215 Perceived Skill Development 58
2005CPSC 101 Phasel e 60
2005 CPSC 101 Phase 1: Images with Enlarged Detail 61
2006 CovenantCPSC 101 Phase 1l i it e o 62
2005CPSC 101 Phase 2 i i e e e 63
2005CPSC 101 Phase3 i e e e 64
2005 CPSC 101 Phase 3: ConvolutionFilters 65
2006 CovenantCPSC 101 Phase3 i i e e 66
2006 CovenantCPSC 101 Phase3 i i e e 67
2005 CPSC 101 Phase 4 Color Transfer oo .. 67
CPSC 101 Phase 4 Color TransferSources 68
2006 CPSC 102 Studentlmages o v i it e e 70
2007 CovenantCollege CS21Images o v v i i i e e e e e e e e e 71
2006 CPSC 212 Phase 1: Tangent plan estimation 75
2006 CPSC 212 Phases 2-4 o i i e e e e e 75
2006-2007 CPSC 212-215COoMPariSONS v v v v v et e e e 76
2007 CPSC 215 Student GUI CheckersGames.cceen v v v oo oo T7
2007 CPSC 215 StudentGUIChessGames. ieieee v oo oo .. 18
2007 Features in Chess Game by Seagers, MusselmarmgainesS 79
Demonstration of the left-handed and right-handed doatd systems 142
Gradientsky L e 147
Ray-sphere intersection L e e 151
Blue sky andfilledcircles 157
Ray scene projection e e 158
Blue sky, circles,andfloor e 161
Checkeralgorithm e e 162
Sky, circles, and checkered floor L 163
Shadows onabrightscene e 185
Angletothelight e 188
Lighting with diffuse component
Light attenuation with distance oo o 194
Vector bounceiillustrationo 196
Scene withreflectivity 201

vii

www.manaraa.com

38 Anti-aliasedimage e e e 204

39 Intersectiontests e 206
40 Scenewithboxes e e 211
41 Checkerboard e e 242
42 Checkerboard with immobile pieceso 247
43 Checkerboardwithinnercircle e e 249
44 Checkerboardwith 3D pieces i e e 250

45 Checkerboard with 3D, anti-aliased pieces

viii

www.manharaa.com

List of Algorithms

2.1
2.2

Fundamental Object Structure
Pseudo-code for raytracing
Output of a single-pixel image file
800 by 600 image creation

Complete function for skipping over comments and whitacsp
Main function that returns an integer
The complete function for reading the ASCII header

Headerfile
Invocation of the header-reading function and erroirtgst.

Modification of the image to exclude blue

Adding scan lines
Fade program
Monochrome program

Declaration of an array of unsigned characters to hotymdata

Reading of the entire block of image data
Rotate 90 degrees
Applying the sharpen filter
Output of the entire block of image data
Dynamic memory allocation
3 by 3 multiplication
Character and float conversion

RGBtoLMSandLMStoRGB
LMS to CIELAB and CIELAB to LMS
RGB to CIELAB and CIELAB to RGB
Image reading utilities
CIELAB conversion main function
Reading file name from command line
File reading with file handle
Log (base 10) and Power of Ten functions
Conversion with minimized skewing
File information structure
Mean and standard deviation
Image scaling
Color transfer main function
Stub raytrace method to fill the image data array with igelg

Main function for invoking the appropriate functiongt@mduce an image file

Complete program to read in and print back outafile

Imagegrayscaling e e
Character and float conversion, continued.

Function for printing a PPM format image to standardout...

www.manaraa.com

.39
40
A4l
A2
43
A4
A5
46
A7
A8
49
.50
51
.52
.53
.54
.55
.56
.57
.58
.59
.60
.61
.62
.63
.64
.65
.66
.67
.68
.69
.70
71
72
.73
74
75
.76
g7
.78
.79
.80
.81
.82
.83
.84
.85
.86
.87
.88
.89

Main function with parameters for accepting commaneé-arguments 140
Declaration of the scene structure o 141
Declaration of the sky structure e 143
Scenesetupfunction L e 144
Conversion from pixel coordinates to world coordinates. 145
Function to compute a specified pixel'svalues 145
Dereferencing of function pointer 145
Conversion of the pixel’s channel valuesto the [0,288pe 146
Complete program for creating a gradient sky pattern 146
Addition of sphere’s color function L e 148
Consolidation of shared attributes in the objectstmect 148
Modification of color functions to match new objectsttwe 149
SQUArE MACIO v o v e e e e e e e e e e e e e e e e 151
Point subtractionfunction L 152
Intersection structure L L e e 152
Sphereintersectionfunction 153
Sky intersectionfunction L e 154
Signature information added to the intersection fumctiointer declaration 155
Specification of the objectsinthescene 156
Addition of nearest objectsearch o oo 157
Specification of the floor structure L. a oL 158
Addition of floor structure to the geometryunion 158
Floor'scolorfunction e 158
Floorintersection functiono 159
Addition of the floortothescene e 160
Two colors in the floor structure 160
Specification ofthe floorcolors 161
Functional floortexture e 163
If-not-defined preprocessordirective L. 164
Pointclass e 165
Point class implementation e 167
Colorclass definition 168
Beginning of Color class implementation 168
Definition of intersection structure o 169
Definition of purely virtual Object methods to be ovedsaa by child classes 169
Sceneclass headerfile e e 170
Definition of the Sky class L 171
Skyclasscodefile. e 171
Sphere class definition 172
Sphereclass 173
Floor class definition 174
Floor class implementation 174
Initialization of Objectsinthe Scene 175
Scene class’s first intersected method and coordinatputation method 175
Raytracer class definition e 176
Raytracer implementation. e 177
Raytracer main function and trace method L. 178
Makefile e 178
Sphere class definition 179
Lightclass definition e 179
Sceneclassdefinition 180
X

www.manaraa.com

.90

91

.92

.93

.94

.95

.96

.97

.98

.99

.100
101
.102
.103
.104
.105
.106
107
.108
.109
110
11
112
113
114
115
116
117
118
119
.120
121
122
123
124
125
126
127
128
129
.130
131
132
133
134
135
.136
137
.138
139
.140

Addition of Lightstothe Scene 181
Method to iteratively return the next light visible frargiven point 182
Addition of a dffuse color method in the Objectclass 182
Creation of diuse color methodsinchildclasses 183
Addition of boolean method specifying whether lightaffgcts this object 183
Color add-to operatoroverloading e 184
Addition of difuse lighting to color computation 184
Point distance, division and unitvector L. Lo 186
Definition of Sky intersection L L e 187
Purely virtual normal computation method in Objectslas 188
Normal computation e e 189
Colorscalingmethod e e 189
Raytracer's pixeltracemethod, 190
Sphere class normal computation L e e 192
Declaration of the weight that distance hasinthisRagr 192
Addition of a distance-traveled-so-farparameter 192
Raytracer::tracpixelupdate 193
Addition of initial distance traveled argument to ttvegbptrace invocation. 194
Point arithmetic methods 195
Vector bounce function L e e 196
Addition of reflectivity attributes to SceneObjects 197
Definition of objects to have reflective components 198
Separation of ffuse color computation L oo 199
Computation of specular reflectivity oo oo 199
Colorscalingmethods e 200
Update of trac@ixel 201
Pseudo-randomjittermethod 202
Raytracer’'s anti-aliasingtrace. e 203
Invocation of anti-aliasing trace from Raytracerloop. 204
Box class definition L 205
Box constructor and ambient color methodso oL 206
Initialization of Box intersection computationvaddes 207
Box class normal computation L e 208
Addition of boxestothescene 209
Linked listnodeclass e 210
Linked list node add aftermethod L 210
Linked listiteratorclass 212
Linked listiteratormethods 212
Iterator method for gettingthe nextObject 212
Iterator dereferencing and incrementing L. 212
Beginning of Linked listcode 213
Remainder of linked listclass e 213
Creation of linked list functions e 214
Sceneobjectsinalinkedlist 215
First intersection method with alinked list 216
Next light method with allinked list. 216
Scene specificationfile L 218
friend function forreadinginaPoint o 219
Friend function forreadinginacolor. 219
Sphere constructor for readingasphere L 0. 220
Box inputconstructor e 221
Xi

www.manaraa.com

141 Floorinput Constructor e e e e 221

142 SKy input constructor L e e e 222
.143 Light constructor for readinginput Lo 222
.144 Added objectreadingmethod L 223
.145 Sceneobjectreading e e 223
.146 Raytracer scene name parameter e 224
.147 Main function thatacceptsaninputfile. 224
A48 Simple program L L e e 235
.149 Beginning of the GameSquareclass 239
.150 Draw method for creating the square in the appropriatation 239
151 CheckerBoardclass e 241
.152 Piece class instance variables and accgsatator methods 243
53 Piece’sdrawmethod e 244
AB4 Squareclass e 245
.155 CheckerBoard Piece placementmethod 245
.156 Updated CheckerBoard constructor. w v e i 246
.157 Beginningof Checkersclass 246
.158 Piece placementmethod e 247
.159 Checkersclassinstantiation 247
.160 Beginning of the Piece classdrawmethod 248
161 Endofdrawmethod e 248
.162 Beginning of updateddrawmethodo 249
A63 GradientPaint L 249
.164 Creationofinsetcircle 250
165 Addition of anti-aliasing e 251
.166 Number across accessormethodaa. . 252
.167 Piece draw method with center location specified 253
.168 Simplified Piecedrawmethod, 253
169 Pieceplaymethod e 254
.170 Addition of reference to movingpiece a oo 254
.171 Updated CheckerBoard's paintmethod L 254
.172 Extension ofthe MouseAdapter e 255
73 Mouse pressed event L L L e e e e e 255
174 Mousedraggedevent e e e 256
175 Mousereleasedmethod L e 256
176 Addition of listener L L e 257
A77 Playerclass e 258
.178 Addition of a Playertothe Piececlass oo v i 259
.179 Updated coloraccessormethod 259
.180 Updated Piecedrawmethod e 260
181 Movevalidation L e e 260
.182 Piece’s make play move with validation 260
.183 Piece placement with associated players 261
.184 Sample exceptionhandling 267
Xii

www.manaraa.com

Chapter 1

Introduction

Theréyvn (pronounced “TEKnee”) project is a zero-based re-desigh@findergraduate curricu-
lum in computer science to incorporate more artistic coneptsireyvn is the Greek word for art. It shares
its root withreyvoloyia, the Greek word for technology. The project name comes oataffort to reunite
art with computer science in order to broaden computer seieducation [15].

Inspiration from the success of the Digital Production Amtsgram and the following pilot course
led to the National Science Foundation grant titleéy¢yn.” Research under the grant has led to 9 papers thus
far, covering the success of the pilot course [15], the thictory course [51], [50], the laboratory approach
[49], the second (CS2) course [17], the first year trial plia6k the second-year data structures course [22],
the application ofreyvy to an upper-level course [14], and the adaptationegfn to a diferent institution
[33].

The background ofeyvn is covered in Chapter 2. The curriculum structure and gdmetheduca-
tional approach are discussed in Chapter 3. Chapter 4 ceiveitar approaches in the literature, and Chapter
5 fleshes out the details of the implementatiom&fvn. Applications ofreyvn to other settings are explained
in Chapter 6, and results and evaluation may be found in @nh&ptDetailed guides for those who wish to

try Téyvn courses in their own settings are available in the appeadice

www.manaraa.com

Chapter 2

Background

The path to creating theeyvn approach began by observations made from the Digital Ptmduc
Arts degree program and from the first trial course taught witarge-scale, graphical problem. From the

beginning;rexyvn demonstrated signs of success which led to its large-sdalgtian.

2.1 Digital Production Arts Degree

In 1999, Clemson University established a graduate degi@grgm that bridged the arts and the
sciences. The Master of Fine Arts in Digital Production Asta two-year program that is aimed at produc-
ing digital artists who carry solid foundations in compueience and thus can expect to find employment
in the rapidly expanding speciaffects industry for video, film, and interactive gaming. Stutden the pro-
gram are required to complete graduate-level work in boghattts and computer science. Graduates have
found employment in many of the top studios, e.g., Indutight & Magic (Lucasfilms), Rhythm & Hues,
BlueSky Studios, DreamWorks, Tippett Studios, and Pixars program &ected a significant change in the
Clemson undergraduate degree program enrollment. Théyfaeinessed a shift of undergraduate majors
from the B.S. degree in Computer Science to the B.A. degr&@ inputer Science with an elected minor in
Art. Whether these undergraduate students ultimatelyuyeuttse DPA program or not, it is our position that
this shift to a more balanced educational experience islustantial benefit to the students and to society.

An interesting and initially unexpected result of the DPAgram was the demographic of the
students enrolled. The problem of under-representatiavoofien and minorities in computing programs is

well known and, nationwide, shows little sign of ameliooati The DPA program had an initial enroliment

www.manaraa.com

of 32% women and 16% African American, both well above theayes for more conventional graduate
programs in computing, including those at Clemson. A nattoajecture was that a DPA-based re-design
of the computer science program woulteet similar enrollment shifts, and the new curriculum migtarit
widespread adoption on this basis as well as on the base$afieed problem-solving skills of the students
and enhanced enthusiasm of all participants.

Consequently, the experiences and observations from tfiaDProduction Arts program led to the
investigational application of art and graphics reseanth iequired computing courses. Instruction in these
courses was and continues to be strictly oriented towage{acale problem-solving using problems that are

visual in nature.

2.2 Raytracing in a Second-Year Course

The trial course for this new, graphical approach was CP; ’iols and Techniques for Software
Development, a second-year course. The intent of the catrdes time was instruction in programming
methodology using C and43-. To meet this end, the trial course [15] was taught throughldihge-scale
problem of constructing a raytracing system for renderingtsetic images. The trial course’s success led to

the National Science Foundation grant titiggvn.

2.2.1 Trial Course Design

The project chosen for the trial course was raytracing. Rairtg is a technique for synthesizing
images by following hypothetical photon paths [18], [2H6]. A raytracing system models a virtual viewer
looking upon a collection of geometrically-specified oltgeia Euclidean three-space. A virtual rectangular
viewing screen is interposed between the viewer and thetshj&éhe screen is oriented so that a vector that
is normal to the screen and based at the center of the scresesg@irough the eye point of the viewer. The
screen is considered a two-dimensional lattice of equalced points representing pixels or sub-pixels of
the final projected image. The raytracing algorithm cre#tesimage by firing a virtual photon from the
viewpoint through each lattice point. If the photon hits dnjeat, it may bounce and hit additional objects.
The color assigned to the lattice point is a weighted sumettiors of all objects hit by the photon. Many
commercial rendering systems for specifitets are based upon raytracing [42]. In addition to being an
interesting, real-world problem, the development of anagihg system provides an ideal mechanism for

exposing the student to the object-oriented (OO) paradigm.system implementation can be initiated in an

www.manaraa.com

imperative style, but it quickly becomes apparent that tlostmeasonable way to represent the interactions
of photons or rays with dierent types of geometric objects is to associate functiongdlculating ray-
object intersection points and surface normal vectors aith type of object. The overall design draws, in a
very natural way, into the object-oriented paradigm. Theelfies of inheritance and polymorphism are clear
from the onset of their introduction. Because the systentgrally grow large and complex very quickly,

techniques for partitioning, testing, and large-scalesttgyment are well-received.

2.2.1.1 Phase | - Fundamentals

Students who entered CPSC 215 at the time of this courseafipttad completed the CS | and
Il courses using Java and had had little or no exposure to tl@gliage or to basic concepts of computer
graphics. Three weeks of the fifteen-week course, includat in-class lecture and assigned projects, were
devoted to fundamentals of the C language, the standaatyitand their use in the representation, storage,
and retrieval of image data. These topics were introducéudmrtontext of several assigned 2D image trans-
formation problems, including converting color imagestaygcale; digital half toning (converting grayscale
to black-white); “colorizing” grayscale movie frames; areformatting standard television images to dis-
play on High Definition monitors. Guidance, in terms of pseembe algorithms and code fragments, was

provided in class to assist students in solving the assignaslems.

2.2.1.2 Phase Il - Raytracing Structure

In the next five weeks of the class, the raytracing problem dexcribed and the key elements
required in its solution were introduced, including the o$structures, unions, pointers, and recursion. A
breadth-first approach with repeated refinements was emgldy this way the students were quickly able
to render simple images and then refine them using more dmaitéxl treatments. Key to success was a
carefully defined structure to represent the “objects” m shene. A typical example is shown in Code 2.1.
Note the extensive use of function pointers. These fungi@inters lead to the object-oriented paradigm by
allowing a geometric shape in the image to have associatexifuns by storing pointers to those functions.

A color is specified as a triple of red, green, and blue (RGB)risities in the range [0,255]. The
functionsambient () anddiffuse() return codicients representing the degree to which the surface of the
object reflects red, green, and blue components of incidgmt | These functions typically return constant
values, but the functional representation supports puregdextures such as a checkerboard floor. An ob-

ject'shits () function is responsible for determining if and where a givay intersects this object. The

4

www.manaraa.com

struct object {
struct color (¥*ambient) ();
struct color (*diffuse)(;
struct color mirror; /* weight on specular */
void (*get normal) ();
int (*hits) Q;
union {
struct ball ball;
struct floor floor;
} config;
struct object *next;

Algorithm 2.1: Fundamental Object Structure

get_normal () function returns a unit vector normal to the surface at arigtpdn Phase I, only two types
of objects, a sphere (called “ball”) and an infinite horizdmlane (called “floor”), were defined, and colors
were limited to grayscale.

A call to trace a ray from a virtual eye point through a pixejjims with an iteration over the object
list to find (viahits()) the object whose ray-object intersection is closest tovilteial eye point. The
color of that pixel is set to the weighted sum of ambienffudie, and specular illumination components. The
ambient component is a constant unless a procedural tastiurese. The dfuse component is proportional
to the cosine of the angle between the surface normal at teeséttion point and a vector pointing toward
the scene light source. The specular (reflective) compaseramputed recursively. The incident ray is
reflected about the surface normal, and a recursive callytoace is made with the intersection point as the
new virtual eye and the reflected ray as the new ray direcfitne returned value from the recursion is the
specular component. Pseudocode for the raytracing digoig shown in Algorithm 2.2.

Requirements for the first raytracing project were flexible:
1. The inclusion of at least one light source, two spherebgakerboard planar surface, and a sky.

2. The illustration of shadows, fllise and specular illumination, and anti-aliasing throughgixel sam-
pling.

3. The production of an image of at least 1024x768 pixels aitlaspect ratio 4:3, with no ratio-induced

distortions.

Some impressive images resulted from this phase: Figure 2.1

www.manaraa.com

color_t raytrace (ray_t ray, float ray depth){
if (ray depth > max depth) return(black);
best distance = +o0;
for (each object in the scene){
compute ray-object intersection point, pt;
if (distance(pt,viewpoint)< best distance){
record object and pt;
update best distance;
}
}
if (no object intersected) return(background color);
add best distance to ray depth;
set color to ambient color for this object;
get normal for this object at pt;
for (each light in the scene){
if (pt not in shadow) {
compute diffuse component for this pt/light;
add diffuse color to color;
}
}
if (object has a specular component){
compute reflected ray;
reflected color = raytrace (reflected ray, ray depth);
add reflected color to color;
}

return(color);

Algorithm 2.2: Pseudo-code for raytracing

2.2.1.3 Phase Il - Raytracing Refinements

In the next four weeks of the course, the design of the raiytgasystem was extended to include
refraction, stereographic projection, and new objectsybeew types included boxes, quadrics, and surfaces
of revolution. Algorithms for the defining functionsits() andget normal (), were derived in class, but
the implementation was left to the students. These additiorthe task naturally generated discussions of
new tools and techniques including dynamic memory allocathon-trivial linking, and modular program
design. With all associated functions grouped in sepaiatg ftudents found “makefiles” tdfer a welcome

relief rather than a burdensome extension. Requirementisdsecond project were again brief and flexible:

1. The inclusion of at least 3 light sources, 2 boxes, 2 sgher@lanar surface, and a sky (unless the

scene is completely enclosed by a sphere or box).

2. The illustration of shadows, fllise and specular illumination, and anti-aliasing throughgixel sam-

6

www.manaraa.com

(a) By student S. Duckworth (b) By student T. Nguyen

Figure 2.1: 2002 CPSC 215 Phase Il Student Renderings.

pling.

3. The production of a color image of at least 1024x576 pixélk an aspect ratio 16:9, with no ratio-

induced distortions.

2.2.1.4 Phase IV - Scene Specification Language

To permit complex scenes and animations to be defined usiegne, file-based specifications, a
week was spent on additiona0 techniques and the design of an integrated parser. The spegification
language suggested was a highly simplified synthesis ofaleserrent formats [66]. Students were free to
extend the language, and several did. In the final two weeksce code simplifications available through the
use of G-+ were discussed. Because OO is a design paradigm, not a aural because the students had
a large OO design in front of them, the transition was not eiéas a major one. In particular, simplifications
available in vector operations (spatial and color) throagérator overloading and the advantages of derived
classes were easily described. The use-pf @or the final raytracing project was optional, and severakto

that option.

2.2.2 Discussion

The impressive images and encouraging evaluations of thisse and all othereyvn results are
in Chapter 7. Some concerns about the size of the problem florea-hour course were raised and later

addressed by moving the raytracer to a four-hour course f0ten Science 1) with its prerequisite course

7

www.manaraa.com

introducing image creation and manipulation. Another gdsssolution is the use of teamwork. Strongest
supporters of cooperative learning [36], [76] admit to doaeks, and thus any teamwork should be structured
in such a way as to encourage peer learning and discouragemsadents from “hiding” in large, strong
teams without genuinely getting involved.

While increased motivation was an expected result from #vecourse, a surprising aspect was the
extent of extra work the students actually performed, in ynaases more than our graduate students who
also write raytracing programs for an advanced graphicsseolSeveral of the undergraduates investigated
advanced techniques, such as new object geometries,itggtand 3D stereograms, on their own. These

features were far beyond the requirements for the assigmgeps.

2.2.3 Conclusions

A benefit of thereyvn project is the opportunity for faculty to engage undergetds with discus-
sions of the research that carries their enthusiasm. Wectumg that the benefits to the students will arise not
only from the problem-solving orientation of the instructiand the exposure to the vitality of real research
problems but also from a newly induced vitality in the instars.

The positive experiences (discussed more in Section 7) thisrcourse and the observations from
the DPA program led to introducing students to computemne@aising theeyvn approach. While raytracing
may seem like a complex topic for second-year students cirfifat-year students now perform raytracing
in the four-hour, second-semester CPSC102 course. Uhlgkeial CPSC215 course, students in CPSC102
have experience in C and in image processing, and as a thsulass is equipped from the first day to focus

on appropriate data structures and algorithms for procg¢kree-dimensional geometry.

www.manaraa.com

Chapter 3

Curriculum

3.1 Educational Goal

Research undetreyvn led to the synthesis of a new direction in computer scienceaibn that
draws upon educational theory and epistemology to addresdgms commonly observed in undergraduate
computing programs, in particular, high drop rates, lackaglty interest in introductory courses, slow
development of students, and lack of participation by womesh minorities. This new direction has led to
the design and implementation of a curriculum in computireg Embodies these principles.

Before discussing a new curriculum for computer sciencemust identify the goal of the curricu-
lum. The obvious answer is to produce good computer sctentidnfortunately, this stated goal is rather
vague, owing to the use of the word “good.” However, it is gallg agreed that a good computer scientist
is skilled in computational problem solving: writing, réagd, analyzing, testing, and debugging computer
programs and algorithms. Less obvious but important skiltkide the ability to work with and learn from
other computer scientists, the creativity to conceive nesearch directions, as well as the ability to pursue
such directions. To generalize, a computer scientist mpistade at the top of Bloom’s taxonomy: analy-
sis, synthesis, and evaluation. Analysis is introducedeaiately in computer science with pattern seeking,
organization of code, and understanding of hidden partalu&tion is important in data structures for com-
paring approaches and choosing the appropriate solutiandiven problem. Finally, synthesis is employed
in research by using old ideas to create new ones, by geziagafrom given facts, and by predicting and

drawing conclusions based on data.

www.manaraa.com

3.2 Problem

The decision to redesign any curriculum naturally flows frim identification of particular prob-
lems with current approaches. With the goal and definitiosahputer science education in mind, what
issues does this curriculum redesign address? While tipisoaph likely has flaws of its own, the issues it
seeks to address are illustrated by the following symptdhéigh drop rates, 2) lack of faculty interest in
teaching lower-level courses, and 3) slow developmentuafesits into good computer scientists.

For each issue, the symptom will not be alleviated withoulragsing the greater cause. For exam-
ple, what causes high drop rates? Lack of programming expegi poor math skills, and poor environment
have all been linked to the lack of retention in Computer S@#g[55]. The most obvious cause is that some
students do not enjoy or are not capable of doing computatimmblem solving. Since professors wish
for students to be happy with their fields, it should be comigd a positive occurrence when such students
transfer to majors better suited for them. Unfortunatedy,all students who believe they cannot do (or do not
like) computer science base their decisions on valid ewide@ften, first-year students, especially students
with no programming experience, feel overwhelmed and aloribe midst of vast amounts of new infor-
mation. The plight of these so-called “at risk” students][S%exacerbated when faculty discourage student
interaction to prevent cheating. This lack of socializatias been linked to drops [68], since the isolation
leads some students to believe that they are the only onegsitrg and afraid to ask for help, only to fall
further and further behind. Other students jump into progréng with alacrity, only to become frustrated by
toy programming assignments that do not solve any usefldl@nes and do not produce impressive results
for the amount of time invested. In this point-and-click getion, students can be easily discouraged by the
basic beginnings used to form the foundation of later edoicaiThe problems of both of these groups, the
overwhelmed and the frustrated, need to be addressed wisingle educational environment.

Lack of faculty interest in lower-level courses can arisavfrmultiple sources. First, faculty, like
students, become bored by toy programs, but devising mégeesting assignments to reinforce computer
science concepts isfticult, especially for early programming courses. Additiypatudents in lower-level
courses often require a taxing amount of out-of-class stppmally, lower-level courses seldom benefit the
instructor’s current research but instead draw neededdimdesnergy away from his or her research interests.
All of these problems should be taken into account when aaum is prepared.

Finally, slow (or non-existent) student development tahlaecoming good computer scientists is

partially a symptom of the problems with student supporty poograms, cut-and-paste code, and poor

10

www.manaraa.com

motivation promote laziness and apathy in students, harthmeducational environment. When the students
are engaged and excited about learning, their academidogenent will greatly improve. An additional
factor is that not all attributes of good computer scieatate currently emphasized in typical curricula.
Areas such as teamwork, creativity, and research skillsldir@ceive more attention in order to encourage

breadth in computer science as well as depth.

3.3 Curriculum Structure

With the stated issues in mind (student isolation, frugtratboredom, and faculty burden), the goal
of reyvny (and more broadly, Quest-Oriented Learning) i€teate a focused, social learning environment
that motivates, educates, and broadens students at alslew#hout undue burden to facultyvith the proper
environment and problem set, students can become excitbthapired to seek the most out of a course
without a burden on the instructor to manufacture the désitlee students.

Eachreyvn course is structured by a large, semester-long graphigsgbrd he graphics project is
selected to fit concepts appropriate for the course levetantent and is broken into phases. From the first
day, the target project is the focus of each phase of thegirajel each new piece of information. From the
first phase, students are not provided with starter codevaraed libraries, since they are building mental
models of computing. In line with constructivism, no advadiconcepts such as objects and abstraction
are introduced before students can fully understand fuedéahbuilding blocks such as looping, branches,
and memory allocation [51]. Research indicates that not arg students experiencindiiitulty grasping
complex abstract topics, but basic programming structameseceiving weakened coverage fined time to
explore object-oriented constructs. Students experidifiieulty understanding variables, parameters, and
loops. “Why should we believe that they can construct a @abbdel of an object such as a radio button?”
[6].

The choice of graphics as the central focus of the projectstiarbitrary. Graphics problemsfard
special educational experiences nfieced by other studies. Besides the obvious visual feedtEmidad by
graphics projects, these projects also leave room forigeeexpression, demonstrate the need for advanced
mathematics, meet students’ expectations of visual comqsnprepare students for the increasingly visual
world, and tap into areas of problem-solving otherwise uat®d. Creative expression is emphasized by
the fact that some graphical results are technically ingivesbut artistically boring. The visual component

presentin computer graphics adds a dimension to the ei@hutprograms. “Unlike other areas of computer

11

www.manaraa.com

science, algorithms must be considered not only for timera@chory usage, but for their visudtect” [77].
This opening for variation among “correct” answers letsghalents hone their own creative skills, and link
left-brain and right-brain activity, the scientific withetaesthetic.

Graphics projects reveal the necessity of advanced mathesguch as calculus, linear algebra, and
trigonometry, through exploration of the relationshipvse¢n mathematics and the form, location, orienta-
tion, and motion of objects in the physical world. Withoutgéble problem focus, such topics in mathematics
often seem irrelevant to students’ lives.

Graphics meet the expectations of a generation of studentstmed to video games and hand-
held computers. Graphics projects create the interes@Giegthical User Interfaces are meant to create [62],
without introducing the complexity of object-oriented gramming and abstraction. Since first-year students
are best suited for concrete knowledge [59], it is best tadalweginning CS with abstraction. See Chapter 5
for an in-depth discussion of the selection of the type ofittrductory language.

Cunningham exposes the visual aspects of problem solvaigth often overlooked by the omission
of required graphics education, including mental viswian, kinesthetic (movement) analogies, aesthetics,
physical modeling, and the ability to visually communicgt2]. He points out that “visual communication
is simply not part of their general education pattern. We litde visual communication in our teaching
except for the diagrams that help students see the pattérmsr gorocesses; our students use almost no
visual communication in expressing their learning.” Cungiam makes the case that graphics courses teach
and reinforce problem solving skills, and similarly we ntain that problem solving skills are taught well
through graphics. Thus, Cunningham’s approach is to enighpsoblem solving in graphics courses, while

we emphasize placing graphics in problem solving courses.

3.4 Educational Approach

3.4.1 Foundation

The educational foundation of theyvn curriculum draws from the work of Piaget in developmental
theory and cognitive constructivism, and Martinez in inigmal learning, as well as from problem-based
learning reinforced with visual feedback.

Starting with cognitive constructivism, Piaget’s genetiistemology describes the natural develop-

ment process of children. The progression in developmenhistural part of all people, young and old, and

12

www.manaraa.com

it is important for education to accommodate this innateniegy process. Piaget breaks down the process
as he observed it in children. A baby begins the exploratfdmienvironment using simple sensorimotor
skills called schemas. These schemas are the startingfpothe creation of knowledge. For any individual,

learning begins at some level that will be built upon.

1. The individual applies the schema tdfdient objects: assimilation. For example, a baby applies th
same action to dierent objects; e.g. after putting a rattle in his mouth, hg tma putting a watch
into his mouth. Similarly, when a person is confronted bywa nbject, that person draws from his old
experiences to determine how to deal with the object. Famgka, if the object is protruding from the
center of a door but does not look like a typical doorknob,paeson will still attempt to rotate it and

pull the door open.

2. When a schema does not work for a given object, the indalitties an adapted version to accommo-
date the object: accommodation. If the baby has a beachHadltannot fit into his mouth, he may
instead grab it and drool on it. Similarly, when an adult disers that the door handle does not respond
to turning and pulling, he attempts variousfdient methods of unlatching, such as lifting, pressing, or

tilting the handle, until he has appropriately accommaodiéte new door handle.

Using a combination of assimilation and accommodationidsagand people) advance their knowledge and
competence [58].

Piaget’s genetic epistemology indicates that the leashapot a blank slate to be dictated upon, as
once thought. Instead, even a developing toddler expetsramd reasons out new information for him-
self. When confronted with unfamiliar objects, the individ constructs a mental model to assimilate or
accommodate it. This development process is an active sitiqniof knowledge, known as constructivism.
“Constructivism is a theory of learning which claims thatdg#nts construct knowledge rather than merely
receive and store knowledge transmitted by the teacher”R@&get contributed much to creating the con-
structivist development model. The theory probably owesiitgins to Immanuel Kant [37] and Jean-Jacques
Rousseau [65]. Kant believed that our innate mental strestare used through the interpretation and or-
ganization of experiences. Rousseau suggested that huenas gere the basis of intellectual development
and that interaction with the environment was the basisdastructing understanding. As with all learners,
computer science students experience and interpret thésed their work and build personal models of
the behavior of objects of interest. Sometimes students h@sconceptions that are later exposed through

contradictory results. Gradually students correct theental models, moving closer to an accurate model,

13

www.manaraa.com

based on their experiences. An “accurate” model is a conaekframework that facilitates interaction with
the environment and prediction of outcomes.

A goal for the curriculum is to support this learning proc#s®ugh the exposure to real-world
problems in order to facilitate the construction of knovgedSuch problems allow students to test and adjust
mental models while developing new computational solgitbmough assimilation and accommodation. This
constructivist learning process is well supported by peobbased learning (PBL). Since its inception in
the 1960’s as a way to improve training of physicians [5],bem-based learning (PBL) has been widely
recognized as a successful method of improving retentidrs&itls acquisition. In computer science, PBL
is employed to teach subjects as varied as design pattethsfsembly language [78], artificial intelligence
[10], and CS1 [28]. Rather than having educational conadpis the curriculum, PBL instead uses realistic
problems to drive the educational experience. For exarpplaple do not study various types of door latches,
but instead solve the problem when they are confronted bysed| door with a new latch that they are
motivated to open. In other words, problem-based learnigg fearner-centred approach in which learning
episodes are motivated by an initial problem that bears sasemblance to ‘real world’ problems” [28].
With this approach, learning occurs when students encouadblocks on the path to the final goal (such as
a large class project), and they are forced to make accontinoddo circumvent the roadblocks. Through
PBL, students experience opportunities for constructeg knowledge.

While students can and do learn computer science in ways letehpcounter to PBL, PBL is a
better approach to motivate that learning. For examplepleaman learn Japanese by enrolling in a university
course and memorizing vocabulary and grammar. Howevesgthbeople would learn much more quickly
and be much more serious about the process if they moved &m Japa year. Suddenly their learning is
prompted by a pressing need to communicate. After a yeaud§stg in Japan, a person may not know as
many grammar rules as his textbook-studying counterpatthé will be much more fluent and capable of
conversation. This is not to say that learning grammar amélvalary is unnecessary. Quite the contrary,
the person living in Japan will be more driven to self studgrtisomeone simply trying to pass a language
class. In the same way, the immersion process invoked by RBErprepares students for work in computer
science and even encourages them to study on their own.

Theteyvn project uses constructivism as a theoretical basis foniegrand problem-based learning
to motivate the learning experience. Fundamental tenetiseofpproach are that a visual problem domain
will most quickly capture the attention and interest of &g who have grown up in a society that is in-

creasingly visually oriented, that a connection betwedénsidic and artistic components will stimulate both

14

www.manaraa.com

deductive thought and creativity, and that toy problemsIdidoe of little value in &ecting the principal
desired accommaodation, an ability to solve real problems.

We wish to move students closer to becoming intentionahlers: “We use the term intentional
learning to refer to cognitive processes that have learaghg goal rather than [as] an incidental outcome”
[7]. Rather than have students work toward the goal of pgsaiolass, students should be on a quest to
become experts in computer science. Another way to put has d@n intentional learner is a person who
learns when outside factors make it unnecessary to do sooddh these types of students seem rare, it is not
wholly unrealistic to suggest that a good curriculum cativatle intentional learners. Every child begins life
enthusiastic, persevering, and ready to learn. A toddleksvbard to improve his pronunciation, his ability
to walk and run, and his understanding of the physical us&@round him. Somewhere in life, students
lose the desire to learn, possibly due to unmotivated, segyniinnecessary busy work. Nevertheless, at the
college level, most students choose for themselves whatitsh to learn and can again become enthusiastic

about the experience.

3.4.2 Approach Clarification

After establishing the basis @€yvn and describing its components, we must point out whgtn
is not. First,reyvn is not a full implementation of constructivism. Construigim taken to its logical end
converts the teacher into a facilitator while asserting there is no absolute truth, merely more or less useful
models. While it is important for students to reason out f@oits on their own, college professors hold a
wealth of information that should be passed onto the stesdédibviously, teachers can lead students toward
the solution, but sometimes in classroom environmentsetisenot enough time to have students rediscover
for themselves everything that years of work in the field hameovered. Also, especially in computer
science, there is absolute truth in certain aspects of thapline, e.g., how a computer stores data, what
happens during execution, etc. While this approach is noll adaptation of constructivism, the key concept
that students build knowledge incrementally working tavan accurate model is foundational to the choice
of incremental semester-long projects that begin at thesbyoand build upward.

Thereyvn curriculum is also not a full implementation of PBL. Once iagaeyvn draws the key
ideas from PBL without applying it in ways some predecesbakg. This implementation is in line with
the problem-centered learning variation [43], in whichcteer is a resource instead of a coach, and the
information is presented to the students in an organizedayall the learning revolves around the problem.

Finally, thereyvn curriculum pulls important key points from Margaret Magi’s System for Inten-

15

www.manaraa.com

tional Learning and Progress Assessment (SILPA), but ibtsarfull implementation of intentional learning.
SILPA has the following six features: 1) domains of knowledgnunciation of what an expert in the field
knows and can do, 2) multidisciplinary lesson plans, 3) difeerentiation: allow the students to be learner,
teacher, and researcher, 4) practice and feedback 5) peagsessment, 6) multidimensional interaction: stu-
dents manage the learning process to achieve their godIsl[d& presentation of the domains of knowledge
exists inteyvn by the statement of a real-life problem that is the goal offiien course. Role ferentiation
occurs in pair design, reports, and open problem discugSiee Chapter 5 for explanation of these support-
ing features). Practice and feedback are provided thrdughdurse and laboratory assignments, and nearly
instantaneously with online coding practice. Progresesssaent is always available to students. Neverthe-
less points 2 and 6 are not incorporated because we belieyevbuld detract from the overall framework,
the problem sd@olding that we supply.

This new approach fuses key points from Piaget, Kant, Rausddartinez, PBL, and the visual
problem domain into thecyvn learning approach with exciting results, as it is used tatera focused, social
learning environment that motivates, educates, and brzasteidents at all levels without undue burden to

faculty.

3.4.3 Quest-Oriented Learning
3.4.3.1 Name

There is no single approach on which thgvn curriculum relies. Beginning with the union of
art and technology;eyvn has grown to become a synergistic blend of problem-basedifeg intentional
learning, constructivism, careful problem selection fritra visual domain, and developmental theory. For
a name encompassing all the components of this approacbebatalized for other learning environments,
we suggest “Quest-Oriented Learning” (QOL).

Understanding the name choice requires understandingsphgevhat a quest is. A quest is de-
fined as “A chivalrous enterprise in medieval romance uguallolving an adventurous journey” [Webster's
Seventh New Collegiate Dictionary, 1965], “a seeking ouinigg” [Webster’s [l New Riverside Dictionary,
1984]. The concept of a quest implies a journey with an unknpath taken to achieve or obtain some-
thing. When a quest is begun, the processes that will benedjto complete are unknown. There will be
skills to acquire, tools to obtain, roads to discover, @rades to face, and obstacles to overcome. There is

no handbook completely covering all the information neebeachieve the goal. Instead, the traveler must

16

www.manaraa.com

find direction from a multitude of sources and steadfastlyggiling through each challenge to reach the final
destination. A quest is an active process that cannot baageglby a monologue from someone who has
completed a quest of his own. Rather, the traveler is simapired by previous achievers to embark on the
journey.

In terms of thereyvn curriculum, how is becoming a computer scientist a questdbiéng a good
computer scientist is not something that can be handed tsttldents through lectures or textbooks. If
success could be achieved through the memorization obligtenciples, textbooks would be certainly more
than adequate, but there are skills as well as new thougbepses that the students must develop. The
educator inspires and equips the student to begin such aggubut learning is an active process that the
students perform. To obtain the knowledge, skills, and Bgpee needed to excel in any field, students must
learn to actively seek these components in the manner ofgt.que

QOL incorporates PBL obviously. Additionally, the studgoning on a quest must be an intentional
learner. He has chosen to undertake it through his own sit@reich spurs him to go beyond the require-
ments in order to learn more. As he works toward his goal, heneewhat is necessary and builds tools
incrementally, from the ground up, or in a constructivisimer. With the schema he has at the beginning, he
gradually develops new skills necessary, in line with Piageenetic Epistemology. Visual problem solving
is incorporated, since the hero of the quest is operatingerréal world with visible results to his actions.
The quest is a real-life struggle. The more educationalrenments model the real world, the better the

resulting education.

3.4.3.2 Components

Broadening the concept of QOke¢y vy can be considered an application of QOL to undergraduate
Computer Science Education. Itis highly likely that othetds and levels of education could apply QOL to
bring about improved student attitude, performance, atitbsiasm. Other applications of QOL should hold
to the same principles presentigyvn.

The goal of Quest-Oriented Learning is to create a focussiaklearning environment that moti-
vates, educates, and broadens students at all levels withdue burden to faculty. QOL implementations

should include this goal and the following components:
e A Fundamental Project that is:

— Large enough to require multiple phases.

17

www.manaraa.com

— The focus of the entire course of education.

— A real-world problem that incorporate visual problem sotyi

Opportunities for excellence above covered material agdirements.

Opportunities to research new information and teach others

Encouragement for immediate commencement of the quest.

Opportunities to repeatedly hone newly-acquired skills.

Open problem discussion amongst others on the quest.

Use of external resources to solve the basic project.

18

www.manharaa.com

Chapter 4

Related Work

Téyvn courses are structured by semester-long graphics-rghatddems to be solved by students
without starter code or special libraries. While no introgtuy courses in computer science follows this
model, there are those that rely on semester-long proj@etsthose that use graphics projects. Below is a

literature review of these categories.

4.1 Semester-Long Projects in Introductory Courses

Most work with structuring courses around a semester-langept has been done with upper-level
and graduate courses. A handful of papers discuss theityadnild benefits of semester-long projects in CS1
and CS2. Bareiss’s desire for CS1 students to have finalqgisdjeat they could tackle entirely by themselves
and yet were complex enough to be interesting, enjoyabtkchallenging led her to assigning the sequential
creation of the Othello game [4]. While no results are disedsand the display type of the game is unclear,
the paper supports the belief that CS1 students can anddshearh through large, realistic projects that
demonstrate the benefits of good programming techniquesiiatie student creation of a portfolio. Outside
of reyvn, Bareiss'’s incorporation of a semester-long project inBd @ppears to be unique.

Semester-long projects have been used in some CS2 counrdadjmg a maze generation and traver-
sal program [73], a five-phase day planner application [@04 a tennis competition bracketing system [26].
The maze generatiginaversal program incorporates matrices and linked lgstgl, provides visual feedback
with command prompt ASCII displays of the maze and chosém @dte day planner application grew out of

the instructor’s concern that student assignments werenmected to the real world and required no mainte-

19

www.manaraa.com

nance, review, or real testing. Thus, students were ass@nealistic program that had to be maintained and
updated throughout the semester. The tennis tournamegitagnovas a semester-long task, but four other
toy programs were interlaced throughout the semester.

All four courses recognized the need for “real-world” prerdols presenting the challenges of code

design and maintainability while grabbing the attentiothaf students.

4.2 Graphics in Introductory Courses

In most cases, graphics are infused into introductory @suis motivate students to learn from fun,
challenging, “real” problems. Many of the projects invoiseage processing, which seems to be a tried-and-
true method of introducing CS concepts. In one study [74ident enjoyment was charted as “very high”
in a CS1 course taught using image processing. Using theSlavey API, students created “MSPaint-like”
effects, first with grayscale images and then with color images. students were required to implement 15
effects and were given compiled image extraction and disptagriies that provided them with 2D arrays
of data to manipulate. Similarly, Burger [9] describes thessroom use of the Java Imag® IAPI and his
own Image class to simplify the modification of grayscaledges including intensity changes, horizontal
and vertical flip, 90 degree rotation, color inversion, aension to black and white, histogram generation,
and various filters (blur (3x3), gauss (3x3), sharpen (3x3), Prewitt edge enhancement). It is unclear if his
approach has been used in introductory courses.

An early proponent of graphical results, Roberge suggkstsstructures projects “intended to show
that programming projects with visual impact can be comsédifrom the traditional elements of a wide va-
riety of courses, in a wide variety of computational envirents” [61]. His suggested projects (note card
system, presentation manager, graphics editor, digitat loircuit laboratory kit, database system, routing
utility, hypertext system, and menu system) were impleeefdr a text-based command-prompt display, but
they were meant to address the already growing frustratidrdésappointment of students in basic program-
ming assignments and instead emphasize real-world pretdech visual engagement.

Another early and often-cited paper describes the use ohltaded gray-scale NASA Martian
planetary images as realistic sources of data for studentsahipulate [23]. Students were provided with
functions to allow them to set single pixel values, read fiigeduce sounds, and manipulate bits. Given these
provided libraries, students enhanced gray-scale imdyesc@ling the values to be across the full spectrum),

equalized a histogram of the values, played music correlpgrto the values of the pixels, and discovered

20

www.manaraa.com

(planted) covert messages in the images. These activides suggested for the laboratory setting and are an
interesting way for students to discover useful applicgtiof computer science.

In order to capture student attention in CS1 and CS2, Jim&weeis et al. explore real-world, chal-
lenging problems [35]. Although the majority of the progstiggested are graphical games (tetris, asteroids,
card games, etc.), two suggested assignments involve ipragessing in CS1 and CS2: image edge detec-
tion and image compression using trees.

A study at Duke University found that “animations and intgrge graphics generate student inter-
est and enthusiasm, which usually translates into bettmpoehension and mastery of the material in our
courses” [2]. Complexity of animation and visualizatiomgrams were hidden from students via provided
object classes that drove the animation process. Studempuoiated “balloon” (filled circle) movements,
tracked frog (filled circle) movements, emulated a carditrglefibrillator monitor, built animated business
histograms, and optionally but most notably, compressetple bitmap images (PBM format).

Although it is outside the realm of the college introductooynputer science course, the “Fun With
Faces” [52] project educated ninth and tenth-grade stsdemut image processing, and all students were
excited by the interesting visuaffects they were able to create with pictures of themselvesk Was done
through the Scion Image program, which allows image cagtndemodification.

The importance and benefits of including graphics in reguemputer Science courses is dis-
cussed in several papers. Hunt lists the fields that rely agéprocessing: “sports broadcasting, mail
delivery, military target acquisition, satellite imagingbotics, medical imaging and the traditional print
industry” [34]. He advises the integration of image proaegito existing courses and describes his Easy-
Bufferedlmage class, built on the Java Image processing kdsras a way to incorporate image processing
into CS1 and CS2. Cunningham and Shiflet emphasize the neadfaphics background in Computational
Sciences and suggest the use of Matlab, Mathematica, Maypte], STELLA, and OpenGL to incorporate
graphics into upper-level, undergraduate courses [13].

Tashakkori utilizes graphics as a means to generate uraikrgte interest in research and describes
a post-CS2 class focused on the study of digital image psowg§69]. The class encourages self motivation
and identifies early on each student’s interests as thegipdd image-processing research.

All of the projects described above are aimed at educatirdgsits in an exciting and visual way that
gets their attention and challenges them to reach beyorecéaqions. Theeyvn approach reaches beyond
these previous approaches by placing large projects aetitercof learning and requiring students to write

all code from the ground up without the use of starter codgecisl libraries.

21

www.manaraa.com

Chapter 5

Implementation

The implementation ofeyvn involves the organization of the courses into phases, therédory
environment, additional supporting features for the cesyrand the decision of which languages to use.
Section 5.1 discusses the phases of each of the first fouse®wifreyvn, Section 5.2 discusses the Pair
Design laboratory structure and other supporting featizmed Section 5.3 explains the choice of C for the

introductory language.

5.1 Course Phases

Below are descriptions of the first four courses in the Comp8tience curriculum and the descrip-
tion of an additional, single-semester course covering @&llCS2. Each course is structured around a large,
semester-long, graphical project. The projects are brdkem into as many as twenty phases (depending on
the level of the course) to demonstrate a progression. Melfihases should be grouped into single assign-
ments. The number of actual assignments each semestehasdistretion of the instructor, as well as any

modifications to improve the project in the class.

5.1.1 Computer Science |

CS1 is structured around the implementation of a color fearrogram that will apply the color
scheme from one image to another. The project will be donéases, beginning with the simple creation of

an image file.

22

www.manaraa.com

5.1.1.1 Single-pixel image

The creation of a 1-pixel image in Portable Pixmap (PPM) fatrthat is printed to standard out.
Required Material: text editor, C compiler, library furaris, 10 functions, preprocessor directives, the main

function, PPM format, binary data, ASCII data.

5.1.1.2 Large, solid image

Printing an 800 by 600 PPM format image to standard out. RedWaterial: variables, data types,

variable declaration, variable assignment, conditiorptessions, variable incrementation, counted loops.

5.1.1.3 File copy

Reading a file (image file) and printing it back out. This phdisavs from previous knowledge and
is working toward the goal of reading in images, maniputatirem, and outputting them. Required Material:

standard input, file streams, unsigned char, conditiomgddpbytes, binary data.

5.1.1.4 Header parsing

Reading a PPM image file, and outputting the width, the heayid the total number of pixels in the
image. Obtaining this information requires knowledge & ittnage header format, unlike the mere copying
performed in the previous stage. Required knowledge: negiditegers, addresses, character comparisons,
nested loops, if statements, un-reading data, error dondijtfunctions, function return values, boolean ex-

pressions, multiplication, test for white space, stdliltipe.h.

5.1.1.5 PPM file copy

Reading a PPM image file, printing it back out, and outputthmgwidth, the height, and the total
number of pixels to standard error. Since this phase doebhawat a great deal of new information, it is a
good time to re-factor the code to have better organizatidresheader file. Required knowledge: outputting
to standard error, addresses, pointers, header files.

5.1.1.6 Single-pass modification

Reading a PPM image file and making a modification to the colidis phase is leading to the final

goal of modifying an image’s color scheme to match anothagien The phase provides practice modifying

23

www.manaraa.com

image data and may be anything, including changing one @fanralue to be a set value, lightening or
darkening all values, converting the image to grayscaseriing scan lines, fading the colors, monochrome,
etc. This is a phase where students can be creative or thedtwtmay simply choose one modification to
require. Additionally, more diicult modifications may receive extra credit. The instrucsanot expected

to explain how to do each option, but instead the studentaldhinquire after the approach. Since more
difficult modifications are worth more points, students shoulethbtvated to learn how to do them. Required

knowledge: information regarding the file modification thaéit be done.

5.1.1.7 Stored-data modification

Reading a PPM image file into an array and making a modificafibe storage of the entire image
at one time is necessary for the final goal of reading in twajiesaentirely and manipulating one based on the
other. Modifications to the image may now depend on knowledgeore than one pixel at a time, such as
resizing, tiling, flip, rotation, blur, and sharpen. Thigsisother possible place for creativity, the improvement

of the previous phase, or combination with the next phasquiRed knowledge: array$read (), furite().

5.1.1.8 Variable input image size

Reading a PPM image file of any size into an array and makingdifivation. Required knowledge:

dynamic memory allocation (single dimensional or multirénsional).

5.1.1.9 Conversionto CIELAB

Reading a PPM image file, converting it to CIELAB colorspanedifying the colors, and printing
it back out. CIELAB color space is a three dimensional cobace in which pairs of colors at equal distances
from one another are perceived to be at equal distances fnerarother. It is sometimes called perceptually
uniform color space. The transformation between RGB spadeC3ELAB space is arithmetic using matrix
multiplication. The modification can be anything from mafdliig one component to produce an interesting
effect to implementing a color balancing algorithm. The matmixitiplication for this phase may be covered
in the laboratory setting or provided to the students. Reglknowledge: matrix multiplication, knowledge

of RGB to CIELAB format.

24

www.manaraa.com

5.1.1.10 Command-line input

Reading a PPM image file specified on the command-line, ctingat to CIELAB format to bal-
ance the colors, and printing it back out. Use of commane-dirguments is necessary for the final phase

when two images must be specified as input. Required knowle@igmmand-line arguments, strings.

5.1.1.11 Color transfer

Reading in two PPM image files, converting them to CIELAB fatpcomputing the means and
standard deviations on each file, adjusting the values dirstamage to the values of the second based on
the paper [60], and printing out the resulting image. Resflknowledge: computation of mean and standard

deviation.

5.1.2 Computer Science I

CS2 is structured around writing a raytracer: a techniquediodering realistic images by modeling
the path from a given starting point to geometrically-sfiediobjects in Euclidean three-space. To create an
image with the raytracer, start at a specified “eye” poinbotlone or more rays in the direction of each pixel,

compute the color resulting from any intersections, angwatthat color.

5.1.2.1 Single-color image generation

The creation of a solid-colored, PPM formatted image filgpatito standard out. Although it is not
yet raytracing, the program can still be structured in a wampnpatible with later raytracing. e.g. Create a
raytracing function that merely fills the array with the apmiate number of pixels. Required knowledge:
arrays, array access, data (bytes) functions, binary (@a¥#@) and ASCII output, PPM image format, ay@ |

redirection.

5.1.2.2 Image of specified size

Creating an image of any specified size. Required knowledgemand-line arguments, dynamic

memory allocation, and string (char*) to integer convensio

25

www.manaraa.com

5.1.2.3 Simplified sky

Creating an image of a sky of any specified size. Althoughathasic step, this phase introduces the
fundamental structure of the raytracer. Required knovdedgader files, forward declarations, structures,
enumerated types, function pointers, scaling, procedexéliring and projection (2D image location to 3D

coordinate conversion).

5.1.2.4 Spheres

Creating an image of any specified size with a sky and any nuoflspheres. Required knowledge:
unions, definition of a sphere, ray-sphere intersectiangtidratic equation, macros, the dot product, point

subtraction, comparing flogtloubles to zero.

5.1.2.5 Plane

Creating an image of any specified size with a sky, any numbspleeres, and a horizontal floor.

Required knowledge: Ray-floor intersection.

5.1.2.6 Checkered plane

Creating an image of any specified size with a sky, any nunfteprteres, and a checkered floor. The
checkered floor will have two alternating colors appliedgaaurally. Required knowledge: Mathematical

function floor() and modular arithmetic.

5.1.2.7 OO tracer

The use of an OO language+£€) to create an image of any specified size with a sky, any number
of spheres, and a checkered floor. Converting+ta-€an be postponed, but it is not suggested. At this point,
students have experienced object-oriented programmiiigpLegh it is implemented via structures, unions,
and function pointers. Staying with procedural progranmgriom this point on will not add any knowledge,
and beginning with objects will introduce many new concenith ample time for practicing programming
in a new language. Additionally, an early conversion te+tGeduces the amount of code that will need to
be rewritten in G-+. If C++ is introduced late in the class, the data structures clasddimtroduce objects
or students should be advised to take an Object-Oriented blefore the data structures class. Covered (but

not required) knowledge: €+ classes, €+ inheritance, virtual methods, purely virtual methodserehces,

26

www.manaraa.com

static methods, destructors, operator overloading, amomg structures, constructor initialization, default

parameters, constant member functions, typedef, iosgeand make files.

5.1.2.8 Shadows

An OO program that creates an image of any specified size wsttyaany number of spheres, a
checkered floor, and has shadows. The lights that cast tli@wiawill be child classes of the Sphere class.

Required knowledge: protected attributes, static locaates, and dfuse lighting.

5.1.2.9 Weighted, difuse contribution

An OO program that creates an image of any specified size wsltyaany number of spheres, a
checkered floor, has shadows, and modulates light corisibbsed on light source distance and angle. The
cosine of the angle is used for computing the light contidsytand will be obtained using the dot product
method. Required knowledge: distance formula, normajiainector, Sphere normal, and Lambert’s cosine

law.

5.1.2.10 Weighted, light contribution

An OO program that creates an image of any specified size witkyaany number of spheres,
a checkered floor, shadows, distafaregle dependent lighting, and overall light intensity mitation with
distances. Although the attenuation of light is not neagsshe addition of a double variable tracking the
distance light has traveled is necessary for specularitight(If light is not attenuated with distances, the
ambient contribution could be reduced. Either approachmé)iRequired knowledge: quadratic attenuation

of electromagnetic radiation.

5.1.2.11 Reflectivity

An OO program that creates an image of any specified size wsltyaany number of spheres, a
checkered floor, shadows, distafaregle dependent lighting contribution, overall light attation, and spec-
ular reflectivity. Reflectivity is produced in a raytracerliguncing rays fi reflective objects and recursively

tracing their paths. Required knowledge: bouncing a rak tie law of reflection, recursion.

27

www.manaraa.com

5.1.2.12 Anti-aliasing

An OO program that creates an image of any specified size wsttyaany number of spheres, a
checkered floor, shadows, distafarggle dependent lighting contribution, overall light atiation, specular
reflectivity, and anti-aliasing. (Anti-aliasing is the keique of minimizing the distortion artifacts known
as aliasing when representing a high-resolution at a loasolution.) The edges of the spheres, and the
reflections in them may have sharp, stair-stepped edgesithabt adequately represent the appropriate
curved shapes. Anti-aliasing techniques will smooth thgesdn the images. The method of anti-aliasing
used here is to capture multiple samples for each pixel hygysseudo-randomly jittered sample points as
ray directions through each pixel. These jittered tracesaseraged to determine the final pixel value. The
result of using the average of multiple, jittered traceslidemded final pixel value that smoothes transitions
among colors in the image. The method for generating theorarsdmple points per pixel may be providedto
the students to reduce complexity. Covered knowledge:ammumber generation, a method of generating

random 3D points that are restricted to a small, 2D plane seg(pixel).

5.1.2.13 Box generation

An OO program that creates an image of any specified size vaky,aany number of spheres, any
number of boxes, a checkered floor, shadows, distangée dependent lighting contribution, overall light
attenuation, specular reflectivity, and anti-aliasing x&®oin this raytracer are defined as 3D cubes whose
sides are aligned with the X, y, and z axes. Thus, a box is defipéwo x,y,z coordinates: a minimum xyz
value designating the left, lower, near corner, and the mawi xyz value designating the right, higher, far

corner. Required knowledge: a fast ray-box intersectigorhm, comparison of doubles.

5.1.2.14 Linked-list object storage

Changes the storage of the objects in the scene to a linked’ he purpose for this data structure
alteration is support for the next phase, in which the objécithe scene are read from a file. Required

knowledge: linked lists, iteration.

5.1.2.15 Input file scene specification

A description of the scene to raytrace is read in from a filetigddlly, students may use the input

operatoroperator>>to read in information. Required knowledge: fif®| and optionally friend functions

28

www.manaraa.com

and the input operator.

5.1.3 Data Structures

The course titled Algorithms and Data Structures is stmact@round the implementation of photon
mapping: an augmentation to a raytracer that supports gliofiase illumination with difuse color bleeding,
caustics, and participating media. The first part of phot@pping is emitting photons from the lights into
the scene and storing them when they hit non-reflective thjgbte second part is rendering the scene using
statistical techniques to extract lighting informatioorfr the maps. Photon mapping specifies sampling of
photons mapped in 3D space, which specifies use of kd-tratted or unbalanced), maxheaps, and use of

sorting algorithms. Students willimplement photon maggmproduce diuse inter-reflections and caustics.

5.1.3.1 Random array-based map

Lighting with a photon map composed of photons (in an arraglomly-placed on a surface. The
benefit of randomly-placed photons is the ability to get alsesults from the beginning before the entire
algorithm is implemented. Required knowledge: random rensibeginnings of runtime complexity, nearest
neighbor function, illumination algorithm.
5.1.3.2 Array-based unreflected photon map

Lighting with a photon map composed of unreflected photoms fa single point light stored in an
array. The runtime will still be remarkably slow. Requiratbkvledge: photon emission algorithm.
5.1.3.3 Array-based, unreflected photon map with heap utitiation

Lighting with a photon map composed of unreflected photoasiarray traced by nearest neighbor
with a maxheap. Required knowledge: heaps and binary haagiste, complexity
5.1.3.4 Unreflected photon map with kd-tree and heap utilizéon

Lighting with a photon map composed of unreflected photom®sdtin an unbalanced kd-tree. Re-

quired knowledge: kd-tree, complexity

29

www.manaraa.com

5.1.3.5 Basic photon mapping

Lighting with a photon map composed of photons that have beftected, transmitted, or absorbed
using Russian roulette to statistically determine the &dteach photon. If 50% of photons are absorbed
after the first intersection, another 50% of those reflectaédaosmitted should be absorbed after the second

intersection. Required knowledge: use of reflection angotibn, color bleed.

5.1.3.6 Photon mapping with projection map

Lighting with a photon map composed of photons that we trdzzskd on a projection map. The
projection map limits photons emitted to directions thdt lead to an intersection with an object. Required
knowledge: matrices

5.1.3.7 Balanced kd-tree photon mapping

Lighting with a photon map that is a balanced kd-tree. Regliknowledge: balancing algorithm.

5.1.3.8 Photon mapping with caustics

Lighting with a photon map and a caustic photon map. Cauatiesfects caused by light passing
through a refractive object and focusing to a strong intgisat causes highlights on another object. A large
number of photons should be emitted toward refractive segféo generate good caustics. A separate caustic

photon map should hold the resulting photons.

5.1.3.9 Photon mapping with ellipsoid nearest neighbor atgrithm

More accurate lightingféects are achieved by using an ellipsoid obtained by comipigetse light-
ing sphere in the direction of the surface normal. This modliion means that photons incorrectly used at
edges and in corners will be minimized. Required knowledgenpression of sphere in the direction of the

normal.

5.1.3.10 Photon mapping with filtering

More accurate lightingféects are achieved through use of a 2D Gaussian filteringrifitf reduces
blurriness and leaked photons by increasing the weight ofquts that are close to the point of interest.

Required knowledge: Gaussian filters

30

www.manaraa.com

5.1.3.11 Photon mapping with multiple lighting types

Lighting with multiple lights and varying light types. Reiged knowledge: methods of emitting
photons from dferent light shapes.
5.1.3.12 Photon mapping with participating media

Inclusion of participating media, such as fog. This topit likely need to be an optional challenge
for more advanced students and involves the creation oftam@imap and use of ray marching and a volume

radiance estimate.

5.1.4 Object-Oriented Design Course

The course titled Tools and Techniques for Software Devakgt, or CS4, is structured around the

creation of a GUI-based, networked chess game, using Java.

e ASCII checkerboard Phase “zero” can be completed as thédirstatory assignment. It is the ASCII
printing of a set of checkers pieces with “x” for black pie@e® “0” for white. This phase is more
or less the Java “Hello, World!” program, but it already gstisdents thinking about board layout.
Required Material: Introductory Java, main method.

5.1.4.1 GUI-based checkerboard

The creation of an empty, GUI-based checkerboard. Reqita@rial: Java (Swing) graphics,
inheritance, overriding methods, invoking parent methods
5.1.4.2 Flat, colored pieces

The creation of a GUI-based checkerboard set correctly waltbred, filled circles. Required mate-
rial: Graphics2D drawing tools.
5.1.4.3 3D pieces

The creation of a GUI-based checkerboard set correctly swithoth, 3D-looking pieces. Required

knowledge: Anti-aliasing command, gradient paint tool.

31

www.manaraa.com

5.1.4.4 Moving pieces

The creation of a GUI-based checkerboard that allows pieces dragged to any square. Required

knowledge: Mouse events.

5.1.4.5 Legally moving pieces

The creation of a GUI-based checkers game that allows ptedesmoved to valid move locations
(diagonally forward). Turns do not matter yet. No new knadge is needed.
5.1.4.6 Legally playable pieces

The creation of a GUI-based checkers game that allows piedesmoved or singly-jumped legally.
Turns do not matter yet. No new knowledge is needed.
5.1.4.7 King creation

The creation of a GUI-based checkers game that allows ptedesmoved and singly-jumped, and
crowns pieces that reach the last rows. Turns do not matteRggjuired knowledge: A way to draw stars on

pieces.

5.1.4.8 King plays

The creation of a GUI-based checkers game that allows piecks moved, singly-jumped, and

crowned, and allows king plays. Turns do not matter yet. Ne kigowledge is needed.

5.1.4.9 Forced multiple jumps

The creation of a GUI-based checkers game that allows peeékings to be moved, jumped,
crowned, and requires multiple jumps to be completed. Tdmsiot matter yet. Required knowledge:

Mouse moved event.

5.1.4.10 Turns

The creation of a GUI-based checkers game that allows ptedss moved, jumped, and crowned,

and requires sides to take turns. Required knowledge: Ggdtiothreads.

32

www.manaraa.com

5.1.4.11 Turn display

The creation of a GUI-based checkers game that allows ptedss moved, jumped, and crowned,

requires turns, and displays current turns. Required kedgd: Layout managers, labels.

5.1.4.12 Required jumps

The creation of a GUI-based checkers game that allows ptedss moved, jumped, and crowned,
requires turns, displays current turns, and requires junipever they are available. No new knowledge is
needed.
5.1.4.13 Game completion notification

A fully-functional, GUI-based checkers game allowing allid plays, requiring turns, and display-
ing the winner then the game is completed. Required knovele@gme lost algorithm.
5.1.4.14 Double bffering

A fully-functional, GUI-based checkers game with doubigtbred graphics for smooth screen re-
draws. Required knowledge: Doubleffaring.
5.1.4.15 Seizable board

A fully-functional, double-bifered, GUI-based checkers game that allows resizing. Retjkitowl-
edge: Component listeners.
5.1.4.16 Networked game

A fully-functional, double-btfered, resize-able, networked, GUI-based checkers gamguiried
knowledge: exceptions, sockets, Jaia. |
5.1.4.17 Multi-threading

A fully-functional, double-bifered, resize-able, networked, GUI-based checkers ganeitba

threading to prevent freezing during network communicat®equired knowledge: threads

33

www.manaraa.com

5.1.4.18 Basic Chess

A fully-functional, double-bifered, resize-able, networked, multi-threaded, GUI-babeds game
with all typical moves. Detecting checkmate and stalemi@@at required yet. Required knowledge: loading

images, chess moves.

5.1.4.19 Complete Chess

A fully-functional, double-bifered, resize-able, networked, multi-threaded, GUI-babeds game
with special moves (en-passant, castling, and pawn promptDetecting checkmate and stalemate are not

required yet.

5.1.4.20 Game end notification

A fully-functional, double-bifered, resize-able, networked, multi-threaded, GUI-babeds game

that notifies on checkmate and stalemate. Required knowldétlgeckmate and stalemate rules.

5.2 Supporting Features

The core of theeyvny approach is using large-scale, graphical projects totstrei¢he learning envi-
ronment. However, the Quest-Oriented Learning (QOL) madmlore than just large, graphical projects, and
include elements of encouraged research into outside ialatéor better results, opportunities for repeated
practice and feedback, and peer learning. While some oéth@sporting elements may not be as important
later on in the students’ academic careers when they hasadilearned how to seek outside information,
how to learn from and teach others, and how to practice and skitis on their own time, it is still important
for the environments in each classroom to provide encounagéfor these healthy learning behaviors. In

beginning classes, students need more direct instrudiitveg learn to take control of their individual quests.

5.2.1 Pair Design for Laboratory Work

This component encourages the student to take the roleafee# his partner does not understand
the problem. Unfortunately, some students actively avolthboration [45], possibly in anfiart to be better
in control of their results or out of fear of social envirormi® It is important to motivate these reluctant

collaborators to begin to build their abilities to work witkher computer scientists.

34

www.manaraa.com

5.2.1.1 Background

Pairs programming is widely recognized as a successfuladathimproving students’ competence
in computer science. Pairs programming has been shown towapourse retention [53], improve program-
ming ability [29], improve test scores [54], accelerate pinegramming process [75], and increase student
enjoyment [53] while lowering students’ dependence onttarstdt [76].

Pair design [49] is a modification on pairs programming whachlitionally provides a place for
students to practice design skills. Teaching studentgdesincepts in first-year courses has been a goal of
many educators, leading to classes solely in design [3liired design submissions [44], and having students
code from a design [25]. However, while all these approaekpsse students to design, they do not actively
demonstrate to students how practicing design can actunatisove their program accuracy anfiieiency.

Consequently, by modifying pairs programming to dependandgrogram design, we have created
a new method of collaboration called pair design. Pair degigvides similar collaboration benefits as
those &orded by pairs programming with 4 additional benefits: 1jstus practice design before coding;
2) students see the benefits of doing a thorough job of de8igstudents must be able to understand the

program enough to work alone; and 4) students learn to teaetanother.

5.2.1.2 Support of QOL

The pairs design approach is used in the laboratory envieomin order to support the Quest-
Oriented learning model by allowing students to learn from geach others, encouraging students to develop
the social relations needed to achieve open problem discyssnd preparing students for the planning
needed in large projects. As students work through the gleEfssemester-long projects, they become aware
of the benefits of designing solutions in advance. Otherwise code becomesflicult to manage and
upgrade. Thereyvn curriculum brings with it an emphasis on planning solutibesore coding. Even if
students are required to hand in designs for their solutibissdifficult to teach them how the design process
should truly work.

To answer this need, we use pair design to train studenteitathhow to design before coding.
In that the semester-long projects «#yvn require good designs, théyvn approach is driving both lab
approach and the class lecture approach. Pair Design potie support needed for the class projects
while also emphasizing the social aspects of learning tteatescognized in the problem-based learning [21],

constructivism [6], and intentional learning [47] apprbes incorporated in the&y vy model. The labs for the

35

www.manaraa.com

Téxvn project utilize teamwork to teach students programminggeheand social skills, as well as reinforce

their programming skills.

5.2.1.3 Description

The concept behind pair design is to adapt pairs programtoiisgnall tasks in order to improve
the lab experience and reinforce other important compuatense skills. There are 4 key components to the
approach: 1) students are to pair up with someone of a sifeilat; 2) students work designing a solution to
the project on paper before coding; 3) students code sebard} students are rewarded for the performance
of their partner and the speed of their completion.

The first component of pair design is based on previous relsewsith pairs programming. Katire
et al. found that students perform better when paired witllestts they perceive to be at a similar level
[38]. Students who consider themselves more advanced higgmtéammates are unlikely to accept input.
Similarly, students who consider their teammates to be mdvanced than themselves may be unwilling to
contribute. Therefore, the best team performance is fromhestts who perceive one another as equals.

The second component is the most important part of the apprdzach pair of students is asked to
design a solution before beginning any coding. Studentswark on paper to outline an approach that is best
for solving the problem. This step is key in training studeatatthink through problems and perform design
testing before beginning code. As students work out thetisoltogether, they learn to locate information
from their notes and textbooks themselves, rather thaingebnly on the lecturer. The key to this phase for
the instructor is choosing problems that can be designed hoar, written in an hour, and yet still require
planning.

The third component gives students a chance to work by tHeesse While this is a departure
from the pairs programming approach, this step providesvebfnefits. One is that both students have the
opportunity to code what they designed together. Therghmth students have the opportunity to look at the
code themselves and understand it. Moreover, if one stugl&aking the lead on the project, he must confirm
that the other student understands the design well enougbrtoon his own. On a small scale, students are
taking on the role of a teacher and practicing use of progriaxgterminology.

The final component is to provide motivation to students tokwwath their partners and to do a good
job of designing the solution. A few students may be prongtmie their partners and work separately, and
others may do a slip-shod job of designing and testing thigde$hus, the last componentis to provide posi-

tive reinforcement for working together by making part ofleatudent’s score depend on the performance of

36

www.manaraa.com

his partner as well as emphasize the importance of codimgdroorrect design. With this approach, students
who refuse to work with their partners will not be able to &sei as high a score as students who do, and
students who design poorly will take much longer to completeassignment than those who have a good

design to work from.

5.2.1.4 Implementation

We have utilized pair design in the laboratory environméamtall four beginning computer science

courses. The components of pair design were implementdée ifotlowing manner:

Pairing At the beginnings of the semesters, students were allowgaitovith whomever they
chose. In classes in which the students did not know each, dttey were assigned partners. Each week,
students were permitted to choosdfelient partners. Once students began ftedintiate themselves by
performance, students were assigned to pairs based omuspriigramming ability. With minor exceptions
though, students had already paired themselves with tH@ssimilar level. In the case of CS2, most students

naturally chose the partners they had had from the previemgster.

Design The first half of the lab period (approximately 45 minutes)dent pairs were asked to
write down on paper a design for the problem at hand. Studesrts allowed to use textbooks and notes,
but not the computer. This final restriction was to preveatlshts from coding and testing the program
early. Students were encouraged to design in pseudocadse tended to write out the program on paper

instead.

Coding At the half-way point of the lab, students were asked to sgpdrom their partners and
code the solutions on their own, using the paper design thdyorked out with their partners. At this point,

students could no longer consult with their partners, bsteiad had to rely on the accuracy of their design.

Reward for Performance At the end of the lab, the first pair to submit the program cutyavas
awarded an extra 5 points. This reward was to help motivatedirs to plan well. Programs that are planned
well do not require as much debugging. If the design is pgrééadents can simply translate pseudo-code to
code and work out any syntax errors. Therefore, this awagkiss® motivate students to do well designing
the solution in the first 45 minutes. By rewarding pairs, stud who are simply fast at programming cannot

win if they have not designed well enough to keep their pastna track.

37

www.manaraa.com

A second incentive for designing well with partners was that student’s partner must correctly
complete the assignment in order for the student to receiw@ ithan an A-. This point system instills in

students the necessity of ensuring their partners’ uraiedsig.

5.2.1.5 Results

The second-year programming class was split into two lalm& with the previous approach of
working individually with no required design and one withipdesign. Both sections were given surveys
about teamwork, design, and other programming behavidiistcally, the results showed nofidirence
between the two sections. While it is disappointing thatdhelents involved in pair design did not outper-
form the students in the original approach, they did not wipdeform the students in the original approach
either. We can conclude that without any detriment to pentorce, students were able to use half of the
lab time to work through solutions with a teammate and hafttine to code, while the other lab used the
entire time to code the same lab. We conjecture that mdiieult problems may be necessary tffeiientiate

performance.

Benefits The intangible benefits of using pair design in CS1 and CSthdeebe that the new
computer science students quickly made friends and ledrapdeach other at a point in which many first-
year students feel isolated and lost. The environment o€tB2 class seemed more open and relaxed than
usual, since the students were more accustomed to thes petire class. Students were ready to discuss
solutions without fear of being wrong. Gradually, studemse learned what design processes work best for
them and led them to complete the assignments more quicklyarectly. Pair design are provided them

the opportunity to engage in trial-and-error learning @ tlesign process.

Needed Improvements A couple of problems surfaced with using pair design withftre-year
classes. While designing the solution was not td@idalilt for the second-year students, first-year students
struggled to work through logic without simply coding thdiemassignment on paper, thus eating into their
design time. Similarly, first-year students were more {ikel design a flawed solution and not identify the
problems until coding time. Since the goal of pairs desigo @rovide practice and motivation for designing,
this is not necessarily a flaw in the approach. However, intlaf these diiculties, future first-year classes
will include more training focused on how to design and tesblation separate from compiling and running

the program. This will better equip the students to applgétrekills in the pair design environment.

38

www.manaraa.com

Conclusions Pairs design provides students with the opportunity tonlehe benefits of design,
design testing, and teamwork. The currentimplementafitimsoapproach seems to indicate that the students
learn equally well in second-year courses while first-yaadants learn the value of discussing and designing
a solution before coding. While beginners struggle withiglesthey are learning the benefits of thinking
problems through completely before typing code. Since niyinning programmers are accustomed to a
technique of “changing things until it works,” pair desiglteanatively exposes students to a mofiecéent

and reliable programming method.

5.2.2 Additional Components

Semester-long graphics projects provide the core straigtuthereyvn curriculum. Additional
components in line with the goals and foundation are alsol@ed, especially for students in lower-level
courses. Five additional reinforcing components useccarbrieakers, online coding practice, encouragement

of extra credit, reports, and open problem discussion.

Ice breakers are a method of introducing students to one another andlisstialg a comfortable
learning environment. Examples include creative selbidictions or group games. These activities encour-
age socialization, decreasing isolation. Also, studethts @do not make friends with others in the class may
be too shy to ask questions in class. While ice breakers midyenas necessary for upper-level courses, they
are strongly encouraged for any group of students in whiemthjority of students do not know one another,

such as the first course in a sequence.

Online coding practice is provided to first-semeste€yvn students through the automatically-
graded, online coding practice suite called Codelkatp@/Avww.turingscraft.cop). While repetitive coding
practice may be achieved other ways, CodelLab has prdiectige in many settings. The National Science
Foundation funded the development of CodelLab out of theemsfal WebToTeach program [1]. CodelLab
gives beginning students the repetitive practice drilisdeal at an early stage to learn language constructs at
their own pace without any burden on the instructor to createdividually grade these drills. CodeLab has
over 200 questions for students to answer, beginning wétd#tlaration of variable types to the creation of

recursive functions. Students must pay to subscribe to Cadaldut CodelLab is free to the instructor.

39

www.manaraa.com

Extra credit encouragement may be provided by capping maximum grades for perfect assign
ments below 100%, requiring some added feature for additipaints. The benefit of encouraging extra
credit is the opportunities for students to express theativity by devising useful additions to the program
not covered in class. Also, students must take the iniBativdiscover how to add these features. To en-
courage the creation of attractive images, a teacher fiayextra credit for artistic results. Anecdotally, the

most creative work done by studentsrigy vy has been from open-ended extra credit.

Class reports let the student presenters discover where to find neededmatmn and practice
explaining these concepts to the rest of the class. Eaclestsidiets experience in minor research and
teaching, while the class learns about new tools. For exanipkthe first-year courses using the unix OS,
every student may give a 5-minute presentation onfizmint unix command. Students learn how to use
man(or the internet) to find information on the command and waifgesentation about it. In later courses,
students may give short presentations on programming igeds, library functions, and related work at the

instructor’s choosing.

Open problem discussion means that students are encouraged to discuss the problémeash
other as long as they never talk about code. Additionallydents who have completed their assignments
are encouraged to help each other with minor syntacticapdemerrors, in which a “minor” error is defined
as an error caused by mistyping, such as misspelled funatieariable names, missing or extra symbols,
or unclosed comments. Errors that are caused by a misuaddisg of the solution, such as adding instead
of multiplying, are not considered minor. Concerns abowatimg have led to restrictive interaction rules,
inhibiting healthy academic growth through contact withess. Restrictive rules have not prevented cheat-
ing; instead, first-year students in highly restrictiveiemwments tend to feel isolated and frustrated, leading
some to panic and flagrantly copy another student’s file. eSgmmne students will cheat regardless of the
rules, it is not useful to penalize honest students. Insiemdecommended that a clear policy of appropriate
interaction be established and agreed upon. For exampagifirst-semester course, students were required
to have anyone who helped them debug minor syntacticalsesign a paper stating what help was given and
when. At the bottom of this so-called “honesty sheet,” theleht signed that no help occurred outside the
help listed and that he did not participate in discussiousliuing code or pseudocode, outside of help with
solving minor compilation problems. The benefit of such shéethat students are clear on what signifies

cheating and must clearly indicate whether they were a gatt blonor codes have been shown to reduce

40

www.manaraa.com

cheating, allowing students the freedom of open discus$iepchologist Lev Vygotsky asserts that learning
happens not by itself but through social interaction [71th&ugh interaction with the professor is definitely
social, more interaction prolongs the learning process.

All of these reinforcements are in line with the goals of Qu@sented Learning and bolster the
foundation of the curriculum. Ice breakers, open problestuksion, and pair design encourage socializa-
tion. Reports, open problem discussion, encouraged evdditcand pair design put students in the roles of
researchers and teachers, in line with intentional legrn@nline coding practice gives students repetitive
practice without burdening the instructor, and open probiiscussion also lessens the load on the teacher

to help with minor debugging problems.

5.3 Introductory Language Selection

It is increasingly common for Computer Science educatoiattoduce students to programming
using object-oriented languages, especially the popala grogramming language. Because of this current
trend, the technique of beginning students with an imperdtinguage (C) is not typical and should be
explained.

First, the author is certainly not unfavorably biased agfalava or object-oriented programming per
se. Not only was Java her first programming language withoblsjgncepts postponed (“Objects Late”), but
the author’s Master’s thesis was a method of extracting UMksdiagrams from €+ source code [48]. The
decision to begin with an imperative language was insteaddapon which approach was more appropriate
for the education of good computer scientists. Under thisi@uum, objects are introduced to students in

the second semester, and Java is currently the languageio&dbr the design class in the fourth semester.

5.3.1 Java Versus C

The debate over the introductory programming language reayrdken down into two categories:
debate over specific language choice and debate over laadyjag) (imperative versus object-orientation).
The specific language choice that has been debated sinasctyation of this curriculum is C versus Java.
Some criticism is aimed almost exclusively at perceived@ms with starting with C, while other criticism

emphasizes a perceived superiority of Java over C.

41

www.manaraa.com

5.3.1.1 Addressing C “Traps”

At the first suggestion of beginning with C instead of Javae oalleague recommended Andrew
Koenig's technical report on C pitfalls [40]. His report afalowing book by the same name bring to
light a great number of tricky points with the C programmiagduage, and it is a great resource for C
users. The paper does not however make the case for Java oasrs@teen of the addressed pitfalls also
occur in Java (due to its similarities to C), including casifin about bitwise and logic operators, string and
character notation, operator precedence, incorrect sémniplacement, switch statement structure, dangling
else clauses, expression evaluation order, zero-bassgsashallow vs. deep copies, integer overflow, shift
operator issues, division truncation, function invocatgarenthesis requirements, and naming restrictions.
An additional shared issue, confusion abosit &nd “==", is addressed in Java by the existence of a boolean
type, but can be addressed in C by requiring students to putdhstants first in conditional comparison
statements. e.d.£(5 == x) {}. Two pitfalls relate to macro use (which should be avoidsggeeially in the
first semester), three relate to misconceptions aboutjifuactions that can be cleared up by reading library
documentation, three have been addressed in newer comgigons, two would be caught by the compiler,
and three are tremendously rare and would be issues onlyferts in the C language who exploit advanced
features and notations in C. Three traps relate to portghithich is a problem in any language except Java,
and Java of course possesses sixteen other pitfalls.

The three remaining pitfalls are the existence of both sigared unsigned character types, the dif-
ferences between pointers and arrays, and assumptiosisalay about its parameters’ types. Java’s lack of
an unsigned character type complicates image processirthesavailability of a choice in C is beneficial.
Pointers and arrays are definitely tricky aspects of the @uage, and while they can be postponed to later in
the first semester, students will eventually need to learann@,placing its introduction into one second-year
course does notfiord students enough time to become comfortable with theuageg [63]. Similarly, use
of scanf can be postponed through use of oth@ functions until students are ready to learn heowvanf
truly handles parameters. An old proverb says, “knowledgeaisy to him who understands”(Prov. 14:6b),

and once students understand hawanf works, they can easily avoid mistakes.

5.3.1.2 Comparing Javato C

After addressing general concerns about C, the questioainsrwhether Java or C is better suited

to introductory courses. Java is described e Java Language Environmdnt James Gosling and Henry

42

www.manaraa.com

McGilton (May 1996) as a simple, interpreted, portableusibhigh-performance, multithreading, adaptable,
secure programming language platform. On the other hamgld€scribed imhe C Programming Language
[39] as a “general-purpose programming language whichufeateconomy of expression, modern control
flow and data structures, and a rich set of operators.” As tdighguessed by their descriptions, the C
programming language is much smaller than the Java progiagrienguage, and the provided C library is
much smaller than the Java API. Thus, the first argument foret dava is that C is a smaller language, and
it is actually simpler to fully understand. Students begigrin Java may be overwhelmed by the extensive
(and still evolving) Java API, whereas the C programmingjlaage’s API is much more limited and more
stationary. Java, with its many advanced features, is di/grkbeginning students who will not benefit from

a large portion of them. Once students are comfortable witlyramming and using provided libraries, the
Java API becomes a wonderful, extensive resource.

Additionally, since Java draws from+G in its design (which in turn draws from C), program
control (counted loops, conditional loops, and branche€§) and Java are virtually identical. Most concepts
needed in C are also needed in Java, and therefore C can basuaeepping stone to Java once the shared
concepts are mastered. One cannot learn to program in aot-@sjented manner without also learning
logical program control, and therefore C provides the fatimhs needed for later OO development.

Extra functionality provided in C that is not in Java inclsdaemory allocation control (i.e. choice
of dynamic or non-dynamic memory), pointers, and more giimdata types (with the exception of a sepa-
rate boolean type). All three features lead to discussibti'eccomputer memory model and promote student
understanding of what occurs inside the machine when thég wode. With its strong ties to assembly
language, “C’s design follows an underlying logic” [63]ppiding a clearer view of the machine than higher
languages do. The direct correlation of C structure to tmemder memory model allows students to observe
any flaws in their naive mental models of computing systernspmmodate the observed behaviors, and
construct more accurate models.

For the purposes of this curriculum, Java’s lack of an uresigcharacter data type makes it less
suitable than C for modifying binary image data. This prabis exacerbated by the lack of flexibility in
the provided JavaO libraries. The simple portable pixmap (PPM) format imatgsfused in the first year
of classes have ASCII headers followed by binary image d#@aa’s IO library makes reading a file with
two different parts diicult. (Note that no image reading libraries are used in C @a dathe introductory
courses.) Java provides a binary data reader, a highlytiier&8ClIl scanner, and a reader that allows data to

be “pushed back” into the stream, but each is a separaterrgad&annot be used in tandem with any other.

43

www.manaraa.com

PPM image files can be read with soméidulty using Java’s data reader, but the resulting data gredi
bytes. Any modifications made to the data must be done afterecting each byte into an unsigned format
(using addition and modular arithmetic) to place it to thegea [0, 255].

While C has some useful features Java does not have, Javahgsiseful features C does not have,
such as garbage collection, built-in string handling, angbter compilatiorinterpretation. These features are
very helpful for experienced programmers, but obscure teelranisms from beginners. Just as mathematics
students learn to do arithmetic before using calculato& sttidents should learn about memory handling,
string representation, and the compiling process befdargusols that perform the work for them. Similar
to the benefits of C’s extra features (pointers, memory atioo control, etc.), C'tack of garbage collection,
built-in string handling, and one-step compilation leablétter understanding of underlying mechanisms. By
needing to free allocated memory and being forced to uraledghe structure of a string, students observe
the impact of their programs on the machines. Similarlyirgethe phases of compilation through use of
preprocessor directives and header files, and the sepacdticompiling and linking, students understand
what a compiler is doing, preparing them for later classeinpilers and optimization.

The understand-before-tools approach that drives tegehamtal arithmetic before calculator use
applies directly to debugging skills. While Java’'s cleamgiler and runtime error messages aid rapid error
location and correction for skilled programmers, thesesuiing features can be detrimental to beginners.
Students often become dependent on an environment’syaioilalmost always pinpoint theflending line
and fall into a “change something in that line” routine, initing the development of debugging skills, and
frustrating students when the line indicated is not acpuidle problem. Students need to learn from the
beginning when the programs are small how to find errors tittaxode reading and analysis so that they
have the debugging skills necessary when program sizesaser Since computers are not yet better able
than a good programmer, students need to develop the skflledt errors themselves in order to benefit later
from the hints provided by error messages.

One final argument draws from the belief that study of older simpler tools naturally segues into
study of newer and more complex tools. The progression frota Tava is better explained in historical
sequence, revealing the logical steps leading from onectottier. For example, by starting without garbage
collection, phasing into garbage collection is straigivfard. Also, since classes and objects were created
to improve design in imperative programming, starting withthem and building the need for them more
naturally follows the historical evolution. Starting a patith C and leading to Java reveals to beginning

students the legacy and profound impact of the C programtaimguage on Computer Science.

44

www.manaraa.com

5.3.2 Imperative versus Object-Oriented

Stepping away from the C and Java discussion, imperativgulages are more appropriate intro-
ductory languages than object-oriented languages for dauof reasons. First, imperative languages begin
students with a concrete, logical foundation before exptpabstract ideas. As pointed out in previous work
[51], first-year college students are better suited for cetedknowledge [59], than for the abstract principles
involved in object-oriented programming. Abstractionfisrjetting” details of implementation and is a won-
derful tool for students, once they understand the undegldietails, but “. . . how is it possible to forget
detail that you never knew or even imagined?” [6] Insteaatjshts learn (constructively) what is shared by
both language types: a “. . . programming foundation (losp&ctions, algorithms, and procedures) which
is best learned in a structured programming environmengrgvgood algorithms can be addressed through
concrete, yet complex in nature, actions or processes” [32]

Second, depending on the educational environment, somergitaking introductory programming
are there merely to learn the basics of programming to all@mntto write single-use, utility programs, such
as scientific data manipulation and analysis. Object-teprogramming adds a great deal of overhead to
the first course, resulting in a “. . . change in the contentstnetture of first-year programming courses.
The requirement to teach object-oriented design prinsitgiads to relegate the essential concepts such as se-
lection and iteration into a secondary position in the itéaching framework” [64]. This added complexity
has sometimes led to a three-course introductory sequémEs[/], instead of the traditional, two-course se-
guence. Of course, a larger number of introductory coussestia concern, but the courses are then called by
faculty and publishers as CS1, CS1.5, and CS2 [57], implthagstudents are not gaining more knowledge
but instead taking two semesters of content in three. Gbjeatly slows learning of fundamentals and opens
students to a variety of misconceptions, including comfgsibjects with single variable wrappers, confusing
objects with aggregate types, assuming limited methodtiakil believing an object is the same as a class,
and confusing references with the objects [30].

The argument that one must start with objects to understhjedits does not stand to reason, in that
object orientation did not always exist, and the first grofipepple to understand objects and explain them
to future generations obviously did not learn programmingn objects-early approach. OO is a wonderful
paradigm for code organization and functionality that dogtsstand separate from imperative programming,
but instead is dependent upon it, and actually grew out oFitrthermore, objective searches “. . . for

empirical work relating to the éiculty of making the shift from imperative to object-oriedfgrogramming”

45

www.manaraa.com

reveal only anecdotal evidence from two papers [41] [19], ‘. but neither paper reported the results of a
systematic study” [46].

Despite the claimed benefits of teaching objects early, tédstabout using the methodology have
continued to rage. Debates on a SIGSCE mailing list wereighgad in 2004 to shed light on some of the

arguments [8]. Contributer Stuart Reges complained

| think that the reason we're having this heated debate tdtthasn’t turned out that a broad
range of teachers have been able to easily teach [objety$ edectively. We hear things like:
Professor A has succeeded because he uses a custom IDEedesjgtifically for teaching
objects; Professor B has succeeded by developing a frarkex@raphics classes; Professor
C has succeeded by developing tons of supporting code fér &ssignment. These are bad
signs, not good signs. Where is the list of professors whe kaeceeded because the material
is straightforward to teach? And if the material isn't gjfaforward for a lifelong computer

scientist to teach, then can it really be all that fundamen&j

Bruce summarizes the debate with the following observati®he one thing that there was near universal
agreement on during the discussion is that it is a challengesatch objects early.” She continues by saying
that those who have been successful use “pedagogical I[pEsijas libraries providing useful classes, or
microworlds” [8]. In contrast, imperative programming daamtaught with no special libraries or interfaces,
equipping students in one semester to write programs withrayps.

As a final point, students should be introduced to progrargririra non-OO manner because stu-
dents never genuinely begin programming in an OO fashioeyaenced by the community’s shift to the
term “objects early” over “objects first.” The instructor yndescribe OO and perhaps even design classes
and objects on paper, but the first programs in objects-éaxtipooks are never truly OO. Either the coding
is done in static methods or the classes demonstrate nohe attributes associated with objects, such as
maintained state (instance variables), encapsulatiosaf#lity, etc. The only true ffierence between begin-
ning programming with objects or without objects is how stlo@ imperative starter code is replaced with
OO code. If it is impossible (or tremendoushffttiult) to introduce programming in an OO fashion, then

objects are clearly a complex topic best left for later dasster students have learned programming basics.

46

www.manaraa.com

Chapter 6

Adaptations to Other Environments

6.1 Adaptation to Small Colleges

During the 2006-2007 year, Professor John Hunt adaéed; to fit the needs of Covenant College,
a small, faith-based, liberal arts school where he is engaloilis experiences [33] demonstrate that existing
Teyvn courses need to be and can be re-tooled to meet the need¥eoénli environments. As large insti-
tutions discover ways to improve curricula, small collegéth fewer resources can benefit from adapting
proven approaches to fit their own needs.

Large universities with strong science and engineeringmamos, such as the type at whiegvn
was created, structure their computer science coursestimatinatural assumption that most students will
be taking multiple courses in computer science and likely lva entering a field requiring a great deal of
programming knowledge. In contrast, at Covenant Collegev#tst majority of first semester students intend
to take only one computer science course to fulfill other fielguirements. In fact, the 2006-2007 year saw
only one computer science major in a class of the thirty twdests. The goals of the other students, outside
of fulfilling major requirements, include the abilities toeate small, single-use programs that solve specific
problems, such as data from a physics experiment. Whiletbeslents may not be looking for careers in
computer science, they still benefit from the challenge aativation provided by Quest-Oriented Learning.

Certain aspects of thetyvny implementation at Clemson may be overkill for studentsridieg to
enroll in only one semester of programming. For example ofiskee Unix environment from the beginning
for computer science students equips them for many cargesramities as well as providing them with

utilities not &forded by other commercial operating systems.

47

www.manaraa.com

Although controversial, Professor Hunt suggests thatemtié C language is a great way to start
for computer science students, ft@ds more deep understanding than needed by non-majoliageeity
basic programming understanding. While we can all agreteetieryone benefits from a deeper knowledge
of any field, Hunt's concern is that the overhead of the dekpewledge to students who have no future in
computer science may be unnecessary.

In the case of Covenant College, while Professor Hunt hadsadibposal the Unix environment
with its C compiler, the decision was made to select a langnagye suited to the students’ expectations that
could be written and compiled on an operating system alréadifiar to them. (Although Windows and Mac
OSX compilers are available, C is not standardized acrosetb@sipilers.) Outside of requiring a language
with the ability to read and write binary files, support forars, and some ability to manipulate bytes, the
first-yearreyvn courses do not mandate any particular programming language

The programming language chosen for environments such asn@ot College needs to be one
that is useful and freely available outside of the educaliemvironment, allowing students to apply their
newly-acquired skills outside of the classroom. Thus,hearlanguages (Karel the Robot, Alice, etc.) are
not appropriate, and neither are languages that requaedes (e.g. C# and Visual Basic). Finally, if faculty
members of other departments assume students have knewémguages with conventional algorithmic
outlook [20] (as is the case at Covenant College), langubkre$Scheme and Haskell are not appropriate.
The desire to use a freely-available, well-known, and higithndardized language at Covenant College led
to the Java programming language. Java is well known fotér@rror messages both at compile time and
particularly at runtime. It is also suitable for additiomaimputer science courses for students who do enroll
in other CS courses.

The choice to teach the course in Java brings its own probleothe least of which is Java’s object
orientation. Non-majors learning programming certaintyrabt need the added complexity of the object-
oriented Paradigm. Additionally, while Java meets all thguirements for theeyvn courses, including the
ability to read and write binary files, Javaj©lis complicated and requires exception handling.

To address these complexity issues, one may use the oléetapproach as Hunt did, requiring
all methods to be static. In the second course (the raylastedents may learn OO, as is appropriate for
the raytracer. Discussion of exception handling may beporstd by use of the “throws” clause any time a
method that throws a checked exception is invoked.

Choosing the programming environment to use for Java reggisme deliberation. Using learning

environments, such as BlueJ and DrJava, for a single sentest#s to lead students to think the interface

48

www.manaraa.com

and the language are one and the same, and students may aps dlave access to these environments. At
Covenant College, Hunt instead instructed students to asie bext-editing programs, such as Notepad and
Wordpad. Compilation may be done with the Sd¥ava compiler from the command prompt. With such a
minimal tool set, students may use any operating systemwlitbh they are comfortable.

Thus, thereyvn approach may be applied to other operating systems and pthgramming lan-
guages that allow generation of PPM format image files. Ofsmithe PPM image format is not as common
as some other more complicated image formats, and while hisxbuilt-in image viewing applications that
support PPM format, other operating systems do not. Fotélynahe internet fiords many free, GUl image
viewing tools that do support the PPM format. Hunt's cladflext on XnView, an image viewer available
for Windows, MacOS X, Linux x86, Linux ppc, FreeBSD x86, OB&D x86, NetBSD x86, Solaris sparc,
Solaris x86, Irix mips, HP-UX, and AlX. Other viewers aredhgavailable, and there will likely continue to
be freeware programs supporting this format and convetstmeen it and more commonly-used formats.

Computer science students, both majors and non-majors berasfit from therey vy curriculum.
The curriculum &ords a motivating and challenging learning experience dnaivs away from the typical
basic programs that tend to bore this generation of studeimds regardless of institution, are more visual
and desire creative expression. With their lifetimes ofesxpe to computers, basic computer functioning (or
even typical GUI's) cease to impress students. Whetherdbel a lifetime of computing or a passing grade

in a single course, students need a curriculum that spagksititerests.

6.2 Adaptation to an Upper-Level Course

Computer graphics provides a natural platform for teachingriety of general computer science
courses due to the rich variety and complexity of the proklemcountered in computer graphics and the
educational advantages of visual learning through therg¢ina and evaluation of graphical images. Addi-
tionally, the real-world problems in the computer graplfiielsl tend to capture the attention of students living
in an ever increasingly visual culture.

In a standard course on programming, assigning large, gisplased projects, as opposed to tradi-
tional “toy” projects, can be accomplished in a fairly sgtatiforward manner, while simultaneously engaging
the students at a much higher level. For a network progragounrse as discussed here, we propose that stu-
dents will find projects such as distributed rendering (&sllis computer-animated feature film production)

and interactive networked-based graphical games moregerggthan traditional projects, such as network

49

www.manaraa.com

monitoring for performance evaluation [14].

6.2.1 The Course: CPSC 360

Students enrolled in CPSC 360—Networked and Distributexhilging, a third-year networking
course at Clemson University—are required to know C, but n@yhave any background in networking;
therefore, the class combines material on networking qusceith experience in network programming.
Topics covered in the course include network types and clexniatics, service paradigms, the OSI network
model, DNS, sockets, network formats, and various proto¢®, UDP, and TCP). Programming topics
include sockets, Unix processes, and object-orientedar&tprogramming with Java anciG-.

Programming assignments in the course traditionally hioieard the final project, a performance
management client-server application. Students use pipiécation to assess network performance with two
types of tests: an echo test and a sustained throughpuFtasthe echo test, the client computes the round
trip time (RTT) of a message traveling between client andeyeto measure network performance. The
sustained throughput test between client and server tihekspeed of data arrival and computes overall

average throughput. Both tests are performed for UDP and TCP

6.2.2 Supporting Resources

Many graphics applications, such as raytracing, are igdesaiited for parallelization. One way to
perform parallel rendering is to employ a network of workistas acting as a single machine. This ap-
proach, termed “distributed” or “cluster” computing, isne@ptually similar to multiprocessing, but here
each processing element consists of an independent mamirinected to a LAN, usually much slower than
a multiprocessor interconnect (backplane) network. Wihile network can be of any type (e.g., Ethernet,
ATM) or any topology, the computers connected to it must supgome type of distributed programming
environment to help the machines work together.

With such a system, we can introduce graphics projects, asichstributed raytracing or real-time
rendering of complicated surfaces, as a means of learnimgonieprogramming. The next section outlines a

proposal for the using these resources in the course.

50

www.manaraa.com

6.2.3 New Approach

The re-designed course undeégvn will cover the same content and require the same type of pro-
gramming, but with a Quest-Oriented approach. In this way,pnovide students the opportunity to learn
about networking through problems relevant to profesdiprectice and provide the motivation to excel in
the educational environment.

The project used to structure the learning for this netwagldourse could involve animation or
manipulation of a large-scale, complicated surfaces (ssdhe rendered image of the Hunley submarine in
Figure 6.1), implementation of an interactive game playedss a network, or the development of a new
method of subdividing production rendering across a lahggter. The instructor could vary the approach in
different semesters. Depending on the amount of work requingdiersts could work in pairs to implement

the assignment. Once a project has been chosen for the cthedestructor must break it down into phases.

Figure 6.1: Fully rendered image of the Civil War-era Hunley Submarine

Choosing the development of a new method of subdividingpetdn raytracing across a large cluster as the
example, we could identify the first phase of the project asleeing a single image on multiple, networked

machines, given the code to render on a single machine. Ehigonk adaptation would expose students to
the advantages of parallelization, as well as the overlmeadiied in using the network. Classroom instruction
at this stage should cover networking basics, socketsranoming models, and sample code for distributing

rendering tasks and compositing the results into a final @nag
Building upon the first phase, the second phase could tfstidg network configurations, proto-

cols, and service paradigms to determine what combinati@mk best for various problems. As students

51

www.manaraa.com

work to write and debug these programs, they will rely on aisaedback provided by the resulting compos-
ited image to determine where problems lie. Methods for lm@ldncing the rendering tasks across multiple
machines can also be addressed at this stage. A rich setdsbidancing possibilities exist, including non-
uniform tiling in image space, decomposition in object spaxs well as variable task assignment between
CPUs and GPUs. If students have previously taken a rayfaziarse, they can research and apply a wide
variety of distributed computing techniques to their poesd projects. Additional information on network
protocols and programming techniques could be explorduspbint.

Finally, after having experimented withftBrent protocols and configurations to improve run-time,
students would be ready to develop their own models of sididivand configuration. This phase does
not need to be completely open, but instead the instructeida@commend papers on new approaches or
recommend ones not yet explored. Having some amount ofdraéd the implementation may lead to a bit
of competition between teams to have their images rendtarfamishing students to seek solutions outside
of classroom material.

The experiences at Covenant College and the example nehgarkurse demonstrate thatyvn
is not restricted to introductory courses at large unitiesi but instead can motivate, support, and broaden

students in many, if not all, computer science coursesydégss of level or learning environment.

52

www.manaraa.com

Chapter 7

Results and Evaluation

7.1 The Original, Second-Year Raytracing Course (215)

This second-year course, which explored programming ndetlogy through the introduction of
the C language via the raytracing project, generated eagmg results [15]. Based on the work performed
and student evaluations, we concluded that the projects mere engaging to the students than previous

approaches.

7.1.1 Student Images

Throughout all phases of the raytracing project, studemtevwencouraged to be creative in scene
design. In spite of the limited tools available to them, thedents showed an impressive creativity. The
images in 7.1 (a) and (b) represent work from the first phagbefay tracer. Considering that the only
geometries known to the students at this stage were theesphdrthe infinite plane, we find these images
show an impressive capability, which can probably be atteiti to the students’ heightened level of interest.
The remaining images show mastery of additional featurash as reflection and anti-aliasing, as well as
optional features, such as quadrics and textures. Fig@reepresents work from the same course taught
two years later by a élierent instructor. The image 7.2 (a) is an Anaglyph, an imhgedppears 3D with
two-color (red-blue) glasses. The sky in image 7.2 (f) wasegated using a noise algorithm the students
downloaded. The creativity and artistic components priasdroth sets of images, which come from classes

with different instructors, demonstrate that the creativity exggedy the students was not restricted to one

53

www.manaraa.com

(a) By student S. Duckworth (b) By student T. Nguyen

(c) By student S. Duckworth (d) By student T. Nguyen

(e) By student J. Holcombe (f) By student S. Haroz

Figure 7.1: 2002 CPSC 215 Example Student Renderings.

54

www.manaraa.com

particular instructor or particular group of students.

7.1.2 Student Evaluations

As evidenced by anonymous semester-end evaluations,ngsutksponded positively to learning
C/C++ through graphics. Many students felt that the semesteypooject was educational and interesting to
implement. They especially seemed to appreciate the visadback from their projects, both for aesthetic
and problem determination purposes. Corroborating egielés supplied by the near absence of student
decisions to drop the course, which was unusual for thesseda Many students brought their laptops
(Clemson requirement) to class to discuss (or shftywloe previous night’s rendering successes and failures.

The following are sample excerpts from anonymous studeaitiations of the course [15]:

e The raytracer project was good because it gave visual fekdifayour accomplishments and impres-
sive results. | liked that we continued with several versiofithe project leading to a large and useful

program in the end.

e The raytracing project was great. It provided practicalgestn learning C rather than just making a

useless program that ‘implements a linked list or binarg.tre
e The raytracer also gave me a much stronger knowledge of Jattaer courses] did with Java.
e Itis the first class where | wrote a program that | will not thraway at the end of the semester.
e The class wasn'tjust like some ordinary class. We got to deetbing fun and dferent.
e Making a raytracer is so much cooler than making a card game.

Other areas of comment, but on the negative side, involve@thount of work required toward the end of
the semester, which was addressed by moving the projectdrtimee-hour course to a four-hour course
and by structuring the previous class to cover C and imageegsing in order to better prepare students for

raytracing.

7.1.3 Survey Results

During the 2003-2004 academic year, 73 students from thif@ereht sections (taught by three
different instructors) of the second-year raytracing courge werveyed to collect their impressions of the

course. One section of the course had beginning Digital irrii@h Arts (graduate, MFA program) students,

55

www.manaraa.com

(a) 3D image by C. Guirl (b) By student D. Duvall

(e) By student K. Johnson (f) By student R. Coleman

Figure 7.2: 2004 CPSC 215 Example Student Renderings.

56

www.manaraa.com

and 8 of those students took the surveys as well. The survestigned students on the relevance of the

course, its impact on their interest in graphics, and theavgment of their C and Unix skills.

7.1.3.1 Course Relevance

Considered Class Appropriate Enjoyed Big Project

30 %

= —sectont]| |2
2

— Section 1
/\ / — Section2 1% / —S:cﬁ::Z
15 / \ / — Section3 / — Section3
10
v

10 Intro DPA / Intro DPA
5 oo /) | —overal 5 & a5k N (= Overal
R R N gl
e e /AN
0 T T T T "7":2 T T 0 ‘_—.-T -y -;?" T — T T \\u/ 1
0 4 2 3 4 5 & ¥ 8 3% 0 1 2 3 4 5§ & T & 9
(a) Appropriateness (b) Success of Big Project

Figure 7.3: 2003-2004 Pilot 215 Course Relevance

The charts (7.3) indicate that while not all students lovssl approach, the majority of students
believed the course appropriate and relevant. On a scal®pfi® students gave the appropriateness of the
course a 6.73, with a median of 7, and a standard deviatior?8f Dn a scale of 0-9, the student enjoyment

of doing a big project was 6.20, with a median of 7, and a stahdeviation of 2.73.

7.1.3.2 Graphics Interest

Prior Graphics Interest Resulting Graphics Interest Graphics Interest Improvement
1 1§ 25
2 °) 2
10 /\ //\\ Er— }g 7| —seaont [\ —Section 1
s— X A —Section2|| | 10 A VT | —secion2| | A — Section 2
6 i Y i — Section 3 8 / 7 | Section3 10 A — Section 3
4 /AN ANV \\/ — Overal . 1~ 7 7 | —=Overal 5 //\\\/ \ A —Overal

01 2 3 4 5 6 7 8 9 0 t+ 2 3 4 5 6 7 8 9 9 A 9B XN B B A QY
(a) Prior Interest (b) Resulting Interest (c) Interest Improvement

Figure 7.4: 2003-2004 Pilot 215 Graphics Interest

A concern that non-DPA students might dislike the classtself are not interested in graphics was

57

www.manharaa.com

addressed by a question about prior and post graphics $htéiee graphics interest beforehand was widely
spread (Figure 7.4(a)) with an average value of 4.82 on safale9, with a median of 5 and a standard
deviation of 2.56. Afterward, students placed interestriapdics at 6.05 with a median of 7 and standard
deviation of 2.47 (Figure 7.4(b)). The graphics interespiavement in students averaged a statistically
significant 1.16 pointsK < .0025) with a median of 1 and a standard deviation of 2.66 (Eigu4(c)). In

conclusion, students were not turndt oy a class heavy in graphical content but developed neweistén
the field.

7.1.3.3 C and Unix Skills

Prior C Knowledge Resuking c Knowledge Improvement in C Knowledge
25 2% 20
2 —Sedtion 2 i — Section1 15 yan —Secion
1 \\ 7 & Secton2 15 Ll A — Section2 P \,\ — Section2
A\ Section3 / Section3
10 1 [\ ,/ \ ntro DPA 10 / \\ SeClnS 1 / \ \mero ;:A
\/ AV N A — Overal 7 ; Y ntro DPA s / \ — Overall
5 hALA =X - 5 L A [—overal N / ¥F\K
-) -~ o i
BAVSR -\ NP AV N ¥a—
01234567289 001 2 3 4 6 7 8 9 24 92 NN 640
(a) Prior C Knowledge (b) Resulting C Knowledge (c) Perceived C Improvement
Ability in Unix Ability to Search in Unix Knowledge of Editors
% 2
2 \ — Section1 2 ’/\ . — Section 1 2 T — Section 1
15 £ \ — Section2 15 A / \\\ — Section 2 15 [A — Section 2
o \ Section3 i / \ Section 3 / \ ,//\ Sectoin 3
0 X Itro DPA 0 i ntro DPA 10 f T | Intro DPA
/ a % / / T e / X,
; /- \ — Overall N / L \ N — Overall 5 FEw== _/ | |—Owral
N A X ° \ S] g i A
. L Lz % LN N s i - =
O 1 2 3 & S5 B T 8 8 01 2 3 4 5 6 7 8 9 01 2 3 4 5 6 7 8 9
(d) Abilities in Unix (e) Ability to Search Unix (f) Knowledge of Unix Text Editors

Figure 7.5: 2003-2004 Pilot 215 Perceived Skill Development

Since the course targeted C and Unix, students were sunadad their perceived skill develop-
ments therein. On the scale of 0-9, students placed thar bnowledge of the C language on average at
2.62 with a median of 2 and a standard deviation of 2.26 (Eigub (a)). After the course, students placed
their C knowledge at a mean of 5.79 with a median of 6 and a atardkviation of 1.79 (Figure 7.5 (b)). The

average perceived gain in C knowledge was a statisticahyifiéant 2.7 points® < .0005) with a median of

3 and a standard deviation of 1.55 (Figure 7.5 (c)).

58

www.manaraa.com

On average, students placed their overall Unix abilitie5.26 points with a median of 5 and a
standard deviation of 1.55 (Figure 7.5 (d)). Students atmrsid their abilities to search for files in Unix to
be on average 4.53 points (median 4, standard deviation Ri@dre 7.5 (a)), and their average abilities with
Unix text editors at 5.57 (median 5, standard deviation 1R8@ure 7.5 (f)). Students felt that they knew C
better than Unix by an average of 61.4% C knowledge to 48.6% khowledge (median of 60%, standard
deviation of 1.66).

Overall, the surveys indicate that the class was succeissiproving students’ knowledge of C
and Unix, as well as their interest in graphics, and the nitgijof students enjoyed the big, semester-long
project. Having thus maintained the educational level ef ¢tburse while adding the benefits of student
and instructor enthusiasm, the pilot course was considesertcess, leading to the installation of #égvn

approach in the first four courses of the Computer Sciencemayj

7.2 Computer Science |

In Computer Science |, the students incrementally work &ate a color transfer program [50].
Using an algorithm due to Reinhard, Ashikhmin, Gooch, and&h[60], students read in two images, apply
the color scheme from one image to the other, and output thétireg image. No libraries other than the
built-in C library were used. The project requires knowlead array indexing, pointers, dynamic memory

allocation, and structures, making it well suited to firstrester students [51].

7.2.1 Phase 1 at Clemson University

In the fall of 2005, less than three weeks into the introdyctmmputer science course, students
were asked to turn in a C program that generated a PPM imagleowgh the images could be solid-color
images (7.6 (c)), students were encouraged to create aestitey pattern for extra credit. From a class of
36 students, 50% turned in extra credit images with patterstapes for the first assignment. Surprisingly,
none of the students asked for help with the extra crediimess See Figures 7.6 and 7.7. Some images have

intricate patterns that have been enlarged in a box in therdpfi-hand corner of the images.

7.2.2 Phase 1 at Covenant College

In the Fall of 2006, Covenant College used ttégvn approach and saw similar results. (More

information about Covenant College’s experiences may bedan Chapter 6). Students came up similar but

59

www.manaraa.com

(a) By student J. Leyh (b) By student M. King (c) By student B. Holder

(d) By student M. Rardon (e) By student V. Tan (f) By student C. Daugherty

(g) By student B. White (h) By student B. Schneider (i) By student J. Canter

(i) By student J. Griswold (k) By student K. Abbot () By student T. Williams

Figure 7.6: 2005 CPSC 101 Phase 1

60

www.manharaa.com

(a) By student L. Seagers (b) By student C. Prosser (c) By student J. Smith

(d) By student K. Musselman (e) By student R. Squires (f) By student W. Phefer

Figure 7.7: 2005 CPSC 101 Phase 1: Images with Enlarged Detail

different creative patterns, as shown in Figure 7.8. Again, @sagth intricate detail have enlarged views in

the boxes in the upper left-hand corners.

7.2.3 Phase 2

Phase 2 was the conversion of an image to grayscale (or ariothge alteration). At Clemson
University, 50% turned in a correct solution for the secohdge, with a few doing creative alterations. See

Figure 7.9.

7.2.4 Phase 3 at Clemson University

Phase 3 was a more complicated modification that requirédring the entire image. At Clemson
University, of the remaining 27 students (fewer students thustandard attrition), nearly 50% completed
a working image fect (Figure 7.10), with five students programming the momapex convolution filter

(blurring, sharpening, or edge detection). See Figure.7.11

61

www.manharaa.com

(b) By student H. Scott

(d) By student J. Lewis (e) By student J. Swanson (f) By student T. Wigboldy

(g) By student A. Alms (h) By student J. Menard (i) By student J. Lawing
(i) By student J. Davis (k) By student N. Jenkins () By student C. Stow

Figure 7.8: 2006 Covenant CPSC 101 Phase 1

62

www.manharaa.com

£
s

(a) By student Y. Feaster (b) By student M. Rardon

(c) By student C. Daugherty (d) By student V. Tan

Figure 7.9: 2005 CPSC 101 Phase 2

63

www.manharaa.com

(a) Rotate 90 by C. Gulotta (b) Vertical Flip by J. Leyh

(c) Rotate 180 (d) Horizontal Flip by T. Steel

Figure 7.10: 2005 CPSC 101 Phase 3

64

www.manaraa.com

(a) Blur by M. Rardon (b) Sharpen by Y. Feaster

Figure 7.11:2005 CPSC 101 Phase 3: Convolution Filters

7.2.5 Phase 3 at Covenant College

Covenant College students demonstrated a great deal di/dseia exploring image manipulations.
Given a source image of Carter Hall on the college campuslests applied color modifications (Figure
7.12), filters (Figure 7.13 (a-c)), image rotation, and ie oase, an imaginative image twist algorithm (Figure

7.13 (d-).

7.2.6 Phase4

Working in pairs on the final project of writing the color tisfar program, two thirds of Clemson
students were able to provide a correct solution for thercwbmsfer algorithm, generating th&exts in

Figure 7.14. Similarly, two thirds of Covenant College ®nts were able to complete a correct solution.

7.2.7 Survey Results

In the Fall of 2005 at Clemson, students were randomly assigmtwo diferent curriculum tracks:
the réyvn track, and the standard track (called the control groupg ddntrol group learned programming
under the “Object Early” approach using Java and a GUI prograng interface (Bluéd). At the end of the

first semester, 20 students from thg/vn group and 16 from the control group completed surveys. Ghart

65

www.manharaa.com

(a) Original (b) By A. McNaughton (c) By J. Menard

(d) By J. Lawing (e) By J. Davis (f) By J. Larkins

Figure 7.12:2006 Covenant CPSC 101 Phase 3

on the answers are coupled with answers on the second-sgraestey. The questions covered students’

feelings about the courses and tested their skills.

7.2.7.1 View of the Course and Its Success

Questions were answered on a scale of 1-5, with 5 being theahdsl being the worst. Table 7.1
below provides the means, medians, and standard devidtiohsth groupszréyvn students felt they knew
the language moreP(< .0025), considered the resources more usd?fuk(.005), would be more likely
to recommend CSR < .01), more strongly considered CS a good decision (not sggmif), and felt they
expressed their creativity more than the control groBp<(.0005). The control group slightly preferred
working with others, and reported nearly identical likigy €S and problem-based learning (all statistically
insignificant).

Teyvn students outperformed the control group on all skills test$ not all mean dierence were
statistically significant. The population sizes were najéeenough to justify t-tests forfiierences in means,
so we used a Monte Carlo version of Fisher’s permutation 243t réyvn students’ feelings about creative

expression, language knowledge, and recommendationssigerigicantly (0.05 or better) better than the

66

www.manaraa.com

(a) By C. Stow (b) By J. Lewis (c) By T. Wigboldy

(d) By A. Musser (e) By A. Musser (f) By A. Musser

Figure 7.13:2006 Covenant CPSC 101 Phase 3

(a) Original (b) Bright colors (c) Sunset

Figure 7.14:2005 CPSC 101 Phase 4 Color Transfer

67

www.manharaa.com

(a) Bright color source (b) Sunset source

Figure 7.15: CPSC 101 Phase 4 Color Transfer Sources

TEYVY Control

Mean | Median | Std. Dev. || Mean | Median | Std. Dev.
Know language 3.2 3 .93 2.3 2 .70
Like CS 2.0 2 1.21 2.0 2 .63
Like working with others 2.2 2 .88 2.2 2 91
Useful resources 4.2 4 .59 3.5 4 .82
Recommend CS 3.9 4 1.02 2.9 3 1.29
CS right decision 4.2 4.5 1.09 3.6 4 1.09
Expressed creativity 3.4 3 1.14 2.1 2 77
Prefer PBL 29 3 1.37 29 3 1.59

Table 7.1: 2005 101 Comparison

68

www.manaraa.com

control group, as were their performances on the code rgaest.

7.2.7.2 Classroom Environment Survey

Walker and Fraser [72] report a strong correlation betweewentional measures of student perfor-
mance (grades, test scores, etc.) and perceptions of teraben environment. Based on their observations
of numerous studies, we used 28 items of their 36-item sutvggauge students in five areas: instructor
support, personal relevance, authentic learning, ac&ming, and student autonomy. The sixth category (8
guestions) covers student interaction and collaboratind,while Quest-Oriented Learning does encourage
open problem discussion (but individual work), many instous still restrict student interaction, rendering

the results in that category less meaningful. During the62B007 school year (one year after the previously

101 Survey

50
45
40
35
30
25
20
15
10
05
0.0

Instructar Personal Authentic Student
support relevance learning Active learning autonomy

Stexnh 1014] 38 34 31 43 44
miexnh 1016 4.1 o 33 40 43
Otexnh 101C| 4.0 28 29 3.8 42

Table 7.2:2006-2007 101 Walker-Fraser Surveys

mentioned surveys), three sectionsréfvny 101 were given the Walker-Fraser classroom environment per
ception survey. The surveys were taken by seven studemtsdre section, eleven from the second, and
thirteen from the third. Since all three courses were tofolthe reyvny model, the only thing that can be

shown by the survey results is the consistency of the colrstgeen semesters and instructors, See 7.2.

Active learning and student autonomy seem to be the stropgéts of this and many of thetyvy courses.

7.3 Computer Science Il

In CS2, students now create raytracers as was originallg dothe experimental 215 course. The
students work toward the final raytracer in phases, regpitirattractive, realistic images. These raytracers
depend on the use of structures, unions, function poirtrigenometric functions, and eventually justify the

use of object-oriented programming.

69

www.manaraa.com

7.3.1 Images at Clemson University

Despite the few geometries covered in class, students iSpheg 2006 course produced creative
images (Figure 7.16, published in [17]). Students seem#tlisiastic about the project, evidenced by course
evaluations and the quality of work. Students routinely tMegyond the requirements of the projects to

produce more advanceétects that they could showfd17].

Figure 7.16:2006 CPSC 102 Student Images

7.3.2 Final Phase at Covenant College

The Spring 2007 class at Covenant College was composed afdmputer science majors, seven
pre-engineering majors (on track to finish at Georgia latibf Technology), and three mathematics majors.
Despite a minority of computer science majors, the studdatsonstrated immense creativity with their

raytracers, as seen in Figure 7.17.

70

www.manaraa.com

(a) Final Student Image (b) Final Student Image

Figure 7.17:2007 Covenant College CS2 Images

7.3.3 Survey Results

Continuing with the two groups begun in the fall of 2005 forSt101, students were in two groups
for CPSC 102 with the control group using the standard ambr{#ava without a GUI interface in the Unix
environment). Due to a technical problem with the web susyélye surveys were not given to students
until the beginning of the third semester (data structucesyse. Nineréyvn students and nineteen control
group students participated in the surveys, and the residte surveys are in Tables 7.3 and 7.4. Overall,
Teyvn students reported better feelings toward CS and teamwoskg(ificant), were more likely to think
CS was the right decision (not significant), were better &blexpress their creativity? < .02), and were
more likely to recommend CS (insignificant). The controlgrdelt they knew their language at a slightly
higher rate, preferred PBL, and considered the resourdaslipful at thereyvn students did (all statistically
insignificant). The means, medians, and standard devsatbthe questions are in Table 7.5. Once again,
Teyvn outperformed the control group in all skills assessmerite Skills assessment section was composed
of eight questions covering data representation, a bamiedi-list function, writing a recursive function, the
recognition of a sorting algorithm (quicksort), and préidic of the number of times the algorithm will loop.
See Table 7.4 for 101-102 skills comparison and the ovekals assessment for 102. The average results

were significantly better foreyvn students < .01).

71

www.manaraa.com

Creative Expression

No
20% 25% 25% 30% 0%
56% 11% 22% 1% 0%
0% 0% 31% 44% 25%
1% 26% 16% 4T% 0%

Feelings about CS

(a) Able to Express Creativity

(b) Feelings Toward CS

Was CS the Right Decision Would Recommend CS
100.00% 60%
80.00% 50%
60.00% 40%
40.00% 30%
20.00% 20%
0.00% 10%
0%
Otexnh 1stSem | 50.00% | 30.00% 5.00% 15.00% | 0.00% Dtesnh 1st Sem 30% 45% 10% 15% 0%
Dtexnh 2nd Sem 78% 0% 22% 0% 0% Stexnh 2nd Sem 4% 22% 22% 1% 0%
W Control 1st Sem | 18.75% 37.50% 31.25% 6.25% 6.25% B Control 15t Sem 8% 38% 19% 19% 19%
B Control 2nd Sem | 32% 7% 16% 0% 0% BContro 2nd Sem | 16% 53% 11% 16%. 0%
(c) Believe CS to be the Right Decision (d) Likeliness to Recommend
Perception of Language Knowledge Look Up Problems Before Asking
70% 60%
60% 50%
50% 40%
40%
30% 30%
20% 20%
10% 10%
v t od ok a little none 0%
gea g always usually seldom
i) 35% 0% 0% 0% mtexnh 1st Sem 45% 45% 10% 0%
1% 1% 33% 33% 1% B texnh 2nd Sem 56% 2% 22% 0%
0% 0% 4% 44% 13% Contral 1st Sem 38% 44% 19% 0%
0% 5% 63% 26% 5% | Control 2nd Sem 42% 26% 26% 5%

(e) Knowledge of the Language

(f) Willingness to Look Up Problems

Table 7.3: 2006 Student Perceptions of 102

72

www.manharaa.com

Number of Correct Logic Answers

100%
80%
60%
40%
20%

0%

o texnh 1st Sem. 30% 20% 30%

15% 5%

@ texnh 2nd Sem. 78% 1% 0%

13% 0%

3% 13% 19%

25% 6%

40%
35%
30%
25%
20%
15%
10%

5%

0%

1st

Code Reading Assessment

2nd Sem(A)

2nd Sem (B)

35%

33%

22%

 Control 1st Sem.
B Control 2nd Sem. | 53% 32%

6% 0%

Dtexnh
B Control

13%

21%

16%

(a) Logic Questions Answer Right

(b) Code Reading Abilities

Code Writing Assessment One-Year Skills Assessment

0% 80%

60% 70%

50% 60%

50%

40% 40%

30% 30%

20% 20%

10% 10%

o 2nd Sem (A) 2nd Sem (B) Ot Rep | Aray e | it | penrson | uakSor | Quekson
[mtexh 40% 67% 2% [@texmh 56% 56% 67% 2% 33% 22%
[mControl 25% 1% 1% [mconrol] 5% 42% 1% 1% 21% 16%

(c) Code Writing Abilities (d) 102 Overall Skills

Table 7.4:2006 102 Skills Comparison

TEYVN Control
Mean | Median | Std. Dev.|| Mean | Median | Std. Dev.
Know language 3.2 3 1.2 3.3 3 7
Like CS 4.2 4 .8 3.9 4 .8
Like working with others 4.0 4 7 3.8 4 .9
Useful resources 4.1 4 .6 4.1 4 .8
Recommend CS 4.0 4 1.1 3.5 4 1.3
CS right decision 4.6 5 .9 3.9 4 1.2
Expressed creativity 4.1 5 1.2 3.0 3 1.1
Prefer PBL 3.3 3 1.2 3.7 4 1.2

Table 7.5: 2006 102 Comparison

73

www.manharaa.com

7.3.3.1 Classroom Environment Survey

In the spring of 2007, the two sections of 102 took the Walkexrser survey, seventeen from one
section and nine from the other. Both courses were taughtigfir the implementation of a raytracer and
show similar results. See 7.6 (a). Additionally, that seteresaw the last of the pivatyvn 215 taught with
the raytracer, and six of those students took the surveylaetrof a better comparison point, the pilot 215
course is compared with the 102 course results 7.6 (b). Bemd very similar and demonstrate strong active

learning and student autonomy.

102 Survey Ray-tracing Survey
50 50
45 45
40 40
35 35
a0 30 —
25 25 —
20 20 —
15 : Z]
10 o
05
00
00 Instructor support g Studentautonomy
Instructorsupport r':j;fj:; Authenticlearning | Activelearning | Studentautonomy Diexnh 1024 x| 33 31 W2 i
|Elexr|h 1024 44 33 EX] 42 44 mtexnh 1028 38 3 28 42 41
|laxr|l’\WZE 38 31 29 42 41 Dtexnh pilot 215| 45 30 31 45 44
(a) rexvn 102 (b) raytracing courses

Table 7.6: 2007 Walker-Fraser Surveys of raytracing Courses

7.4 Second-Year Data Structures Course (212)

In this second-year course on algorithms and data strigtsiedents used an algorithm by Hoppe,
DeRose, Duchamp, McDonald, Stuetzle [31] to reconstrugasas from unorganized points. This project
required the use of advanced tree structures, sortinghgramd other typical topics in data structures. The
description of this application afyvn to Algorithms and Data Structures has been accepted foeptason
at Eurographics [22] and contains these images showingthsgs of surface reconstruction. Figure 7.18 (a)

shows the 4102 points representing the mechpart used byeHsigd. and used in this course.

7.4.1 Phase I: Tangent Plane Estimation

Tangent plane estimation uses a kd-tree to organize thdspailiowing dficient location of the

nearest neighboring points. Normals are computed usimgipadl components analysis. See Figure 7.18(b).

74

www.manaraa.com

(a) Mechpart points (b) Tangent plane normals

Figure 7.18:2006 CPSC 212 Phase 1: Tangent plan estimation

7.4.2 Phase Il: Consistent Tangent Plane Orientation

This phase utilizes a minimum spanning tree and a prioriguguto generate consistent tangent

plane orientation. See Figure 7.19(a).

(a) Consistent plane orientation (b) Signed distance function (c) Triangulated surface approxima-
tion

Figure 7.19:2006 CPSC 212 Phases 2-4

7.4.3 Phase lll: Signed Distance Function

This phase re-uses the kd-tree to construct a signed désfanction on 3D space, where distance

is measured to the nearest surface tangent plane. See Figa(b).

7.4.4 Phase IV: Contour Tracing

This phase uses the marching cubes algorithm to extractrthesiirface approximation from the

signed distance function. See Figure 7.19(c).

75

www.manaraa.com

The problem for this course was quitdfatiult and students seemed at times to be overwhelmed. The
paper [22] explores improvements that may be made, suctgasiieg immediately with 3D representations
instead of an introductory 2D representation and narrowinifpe breadth of potential algorithms and data
structures compared (e.g. Kruskal’s vs. Prim’s algorituclidean MST vs. Riemannian graph, Fibonacci

heap vs. binary heap) in order to keep the focus and momeritthm course.

7.4.5 Survey Results

In the 2006-2007 school year, students were given the Walkaser survey to assess classroom
environment, and in the fall of 2006, te#yvn students turned in the surveys. Unfortunately, not a single
student from the control group participated in the endesfisster survey. Therefore, comparison of the 212
T€xvn group to the control group is impossible. However, eleverdaits in the following semester 212
course, again taught with the standard approach, did taksutvey and can be used for comparison.

Table 7.20 (a) demonstrates thakvn students perceived the class environment to have more au-
thentic learning, but reported below the control group Irotier areas. This dip implies that, although stu-
dents perceived that they were studying were real-worlthleros and solutions, other aspects of the course
sufered, perhaps due to previously discussed issues. Futplermantations of the course will seek to better

support the classroom environment in all areas.

212 Survey 215 Survey

50
45
40 40
35 15
3.0 10
25 25
20 20
15 15
10 1.0
05 05

00 0.0
Instructor Personal Authentic Active lzarming Student

50
45

Student
autonomy

nstructor suppot Personal Authentic

autanomy relevance eaming Active learming

support relevance learning
|I:Itexnh 212 32 23 29 3.9 42 ‘Dtexrr'ZWE 44 38 40 41 a7
|lCuntro|2|2 41 27 25 43 43 ‘laxrhuﬂﬂiﬁ 45 30 31 45 44

(a) 2006-2007 CPSC 212 Comparison (b) 2007 215 Walker-Fraser Results

Figure 7.20:2006-2007 CPSC 212-215 Comparisons

76

www.manaraa.com

7.5 Second-Year, Tools and Techniques for Software Develo@nt (215)

In this three-hour course, students learned Java and OQndiesorder to write a GUI-based, net-

worked chess game. Since Java was new to most of them, thenssudorked in pairs or groups of three.

7.5.1 Student Programs

The project was done in four phases, the first three of whictewbeckers games (Figure 7.23.
Once the students had all the components of legal piece nensrand networking in place, the games were
converted to chess (phase four). Students were encouraged extra credit features to their games, and all
did. Features included selectable piece shapes (7.22r{halors (7.23 (b)), menus (7.23 (b)), antialiased
graphics (7.23 (a)), chat windows 7.23 (b), choice of screame (7.23 (a)), choice of networking or local

game (7.23 (a)), and many other options.

EEx

Remote Player’s turn is now Fred's turn.

(a) Game by M. Rardon and B. White (b) Game by C. Daugherty, J. Canter, and Y. Feaster

Figure 7.21:2007 CPSC 215 Student GUI Checkers Games.

77

www.manharaa.com

Network Game: Client

1 Classic Pieces AT

g ‘ Simple Pieces 415

7 Modern Pieces Aith
£

N : !

i Spongebob Pieces Aite

‘ ﬁh Star Wars Pieces A

T U

White's Turn

Remote Player's turn

(a) Game by M. Rardon and B. White (b) Game by A. Webber, B. Sterrett, and J. Leyh

Figure 7.22:2007 CPSC 215 Student GUI Chess Games.

7.5.2 Survey Results
7.5.2.1 Walker-Fraser

In Spring 2007, six students in the pilot 215 (raytracer)rsewand nine from the new 215 course
took the Walker-Fraser survey. While the results of theremgr course have already been shown with 102

results, it may be of interest to see the courses comparéeé ifiable 7.20 (b).

7.5.3 Quantitative Results

In the spring of 2007, 13¢yvn 101 students, 26eyvn 102 students from two sections (seventeen
and nine, respectively), eleven negyvny 212 students, six pilot 215 students, and niggvy 215 students
answered two questions testing understanding of the caanmemory model, one on OO design, and one
that involved writing an algorithm to solve a simplified praghming contest question. The OO design
guestion presented the idea of a Singleton design pattérpranided multiple choice answers for what type
of functions and attributes would be necessary to creategle€don class. The question seems to have been
above the levels of the students, and 102 students who HadJi® exposure were the most likely to get the

answer correct. The simplified programming contest questias not attempted by most people, and though

78

www.manharaa.com

Checkm8
File Help

Options

Player Hame
Fred
Address
127.0.01

(a) User Name and Host Input

i

Game Chat

System: A new player has joined the game.
Fred: Let's seeif I can beat you again.
Ywvon: Mot this time.)

Fred: We'll zee)

(b) Chat Window

Figure 7.23: 2007 Features in Chess Game by Seagers, Musselman, andsSquir

79

www.manharaa.com

many of those who tried achieved answers that were neartectorvery few were able to correctly answer
it. See Table 7.7.

More encouraging were the results of the memory data reptatsen questions. First, the array
representation question was correctly answered by afittee than a quarter of the nawéyvn 212 course,
with Téyvn 215 a close second. The question tested students’ knowt#dbe storage of 2D arrays as flat
arrays in memory.

The other question asked students what the expressibihlé (*t++ = *s++);” achieved. The
majority of the second yeai&yvn students recognized the operation as a string copy. Segemustudents
who began with C were substantially more likely to underdttye expression than those who had not. Inter-
estingly enough, Joel Spolsky refers directly to this faghg copy, saying “I don’t care how much you know
about continuations and closures and exception handlirngiui can’'t explain why while (*s++="t++);’
copies a string, or if that isn’t the most natural thing in therld to you, well, you're programming based
on superstition, as far as I'm concerned: a medical doctar edesn’t know basic anatomy, ...Advice for

computer science college studeranuary 2005, httfiwww.joelonsoftware.copi).

Design and Problem Solving Data Representation
70% - 100%
60% = 80%
50% ul 60%
40% [H 40%
30% N B 20% 4|_i—|»
20% = 0%
String Representation Array Representation
10% = m o101 15% 8%
0% 7J 5 | 102A 35% 0%
101 102A 102B | 2120ld | 215C | 21500 01028 11% 0%
@00 Design 0% 18% 33% 0% 33% 1% 0212 old 36% 21%
B Problem Solving: Right 0% 12% 1% 9% 0% 1% W215C 50% 17%
O Problem Solving: Close 0% 24% 44% 9% 17% 67% m21500 78% 22%
(a) OO and Problem Solving (b) Data Representation

Table 7.7:2007 215 Walker-Fraser Results

7.6 Retention

In the fall of 2005, 31 students started#gyvn 101, and 30 started in the control group 101. In
the spring of 2007, ten of th&yvn students completetkyvn 215 (nearly one third), and six of the control

group completed the pilot 215 (one fifth). See Table 7.8. Guaent from each course waff schedule due

80

www.manaraa.com

to involvement in coop experiences, one from each was a Ctanpguagineering major, one from the control
group was a Chemical Engineering major and one was a Geregal€ering major, and one fronayvn and
three from the control group were behind due to failing a seuiThus, both groups retained 13 students in
some form. The others either left Clemson University ordfared to unrelated fields. While the retentions
may appear similar, students in theyvny approach were more likely to stay computer science majat$é@an
pass the classes. One may speculate thatgpe; courses provide the motivation to keep students on track,

but more information is needed to come to that conclusion.

Retention
20
8 58% 57%
16
14
12
10 32%
. 23%
. 20%
. 10%
2
0
On Track Off Track Gone
@ Texnh 10 3 18
u Control 6 7 17

Table 7.8: Retention

7.7 Observations

In addition to an insignificantly better retention rate,tbeperformance on one-year skills assess-
ment, and improved enjoyment of the CS major, some positdgevations have been made about the stu-
dents who have come through the first four-semester seqoéttoerey vy curriculum. First, students of this
group consistently started assignments early enough tpletethem on time. Imeyvn 215, only one team
on one assignment was unable to complete the program on linbentrast, a large minority of students in
the control group turned in assignments late or incomplBte.behavior of the experimental group is counter
to the culture of procrastination typical with beginningrgauter science students, and may be due to the size
of the assignments, the interest generated by the assigsna@id the expectation of others in the class that
starting early was the right approach, by virtue of the presitwo reasons.

Second, the students in the experimental group seemed &dagef uncommonly well. The cama-

81

www.manaraa.com

raderie was evidenced by the nearly universal initiativalanpart of the students to help each other with
non-academic problems, such as when one student was HiasgitaAdditionally, in the fourth semester,
when teams were required for every class assignment, tdlactiea for the students was quickly (and ap-
parently easily) done, even with groups who had not preWyowsrked together. Not one team from the
experimental group ever complained of team or teammatelgmady and all their assignments were good
quality.

Finally, students who learned undsiyvn seem to exhibit less than the typical hubris associated
with computer science students. While students were cartfidéheir abilities to solve problems, no student
seemed to think himseglferself better than any other student, despite acknowtedikerences in skills.
Students were comfortable enough with each other to distusparative strengths and weaknesses while
breaking up projects. This importance of these studentsitiab to work together well may be seen by
comments made by the founder and chairman of the world'efrgpftware company. On May 30, 2007,
Microsoft Chairman Bill Gates and Apple CEO Steve Jobs waterviewed by Kara Swisher and Walt
Mossberg at the D5 conference. During the following questiod answer session, Gates stated that one of
the greatest challenges in building Microsoft, and the areshich he likely made the most mistakes, was
getting people with broad skills sets to work well togethgnus, being an asset to a company is more than
being a good researcher and programmer but also requiresdied skills to put those talents to use.

It appears thateyvn students, with their significantly better computationalgem solving skills at
the one-year assessment (compared to the control groep)afiparent abilities to work with and learn from
others, and their expressed creativity, are on track torhempwhat we define as “good computer scientists.”
They are more likely to remain computer science majors aadikely better suited for upper-level classes
and industry careers with their disdain for procrastingtmmmfort with teamwork, and open-mindedness to

other programmers’ ideas. We eagerly anticipate theiresgcin future classes and in following careers.

82

www.manaraa.com

Appendices

83

www.manharaa.co

Appendix A CS1 Guide

A.1 Credits

4 (3 hours lecture and 2 hours lab)

A.2 Prerequisites

MTHSC 105, or satisfactory score (520) on the MathematieLk Achievement Test, or consent
of the instructor. Students are not expected to have pragiagiexperience. Nevertheless, this is not a

general introduction to computing. It is intended primafdr computing majors and minors.

A.3 Course Goals

This course teaches the following computer science skiistachniques:

Understanding the basic process of problem-solving ustanguter.

Understanding the basic machine memory model.

Developing competence in the Unix environment.

Developing the ability to implement simple computer pragsa

A.4 Course Description

This course, like alkeyvn courses, is based on a large, semester-long project fromighal prob-
lem domain. CS1 is focused on the implementation of a colmsfier program that will apply the color
scheme from one image to another. The project is done in phheginning with the creation of a simple

image file.

A5 Resources

For image processing, a good referencBiigital Image Processing?nd edition by R. C. Gonzalez
and R. E. Woods. (2001. Addison-Wesley Longman Publishing i@c.).

For color transfer, the source paper is a great refereGodor Transfer between Imagedy E.
Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley (2001. IBE&Emput. Graph. Appl. 21, 5 (Sep. 2001),
34-41.)

84

www.manaraa.com

A.6 Lesson Guide
A.6.1 Suggested Course Policies

e Recommended textbookhe C Programming Language, Second EditigrBrian W.
Kernighan and Dennis M. Ritchie amiilletproof Unixby Tim Gottleber

e Required servicehttp;Avww.turingscraft.conCodelab is an online service the students must pay
for that provides an opportunity for practicing programmimith immediate feedback. Sections (or
departmerfschool) can be assigned with deadlines at the instructscsetion. One approach that has
been found to befiective is to require each student to complete 100 exercefesdreceiving a copy
of the midterm examination and 200 exercises (total) befeceiving a copy of the final examination.
The benefits of this approach include allowing students tkwbtheir own pace and reduced pressure,

since the exercises are not included in their grades.

e Presentations. Each student should do one 5-minute patigenon a topic helpful to the class that
will not be incorporated into the lecture or lab class. Tha®sentations can be done each day during
the opening minutes of class. The purpose of these pregargas to educate students on how to
find information about a topic and how to explain it to othe®&uggested topics for this class are
Unix commands. Once the students have learned about “ntay’dan easily look up and present
information about any other typical Unix command. For adispossible topics, see the terms used in
the example ice breaker below. Students should name the aathrexplain the reason for its name,

explain its typical useful, and demonstrate how to use it.
e Assignments
— On-time assignments have a maximum value below 100% to eageuhe addition of extra
credit features.
— Style contributes to assignment grades. Suggested stiglelmes:

*» Use a fixed number of spaces for each indentation. Be considdick a number and stay
with it.
» Use the space bar to indent to avoicteiing interpretations of tab size.

» Every C statement must begin on a separate line.

85

www.manaraa.com

*

If the condition for execution, such as in a while or if stagrhcan be written in the form

“(constant=var)” it should not be written in the form “(vat=constant)”.
» Comments must be included when they will aid the reader iretstending the program.
» Use meaningful variable names. Long names are better ttoafy shclear names.
* Avoid the single letter ‘0’ and the single letter ‘I’ for vafble names.
» Use white space (hard returns) to stlogical ideas.

* Keep functions short.

e Academic Dishonesty: Some forms of collaboration are beiaéfio all and enhance learning; oth-
ers are not. A clearly stated policy is important. Suggestdaating will be taken very seriously,
resulting in harsh penalties. Since the skills requirechia tlass are also required in the next class,
cheating in this class will seriously hamper your abilityosuccessful in the next class. Appropriate

Collaboration:
1. Sharing class notes with another student.
2. Discussing anything that was covered in class.

3. Helping a fellow student locate a bug in his program, pitedithe following are true:

— The helper has already completed his program.
— The helper never types or dictates code for the other student

— The helper helps with minor details of small sections, nbtisg the programming problem

for him.

— The helper signs the other student’s honesty sheet. An hosleset is a paper listing any
help received on an assignment, including the date, the éthe person, the type of help,
and the signature of the person. At the bottom of the pagesttitient must sign that he did
the assignment completely by himself with the exceptiorheflisted help, which was all in

line with the honesty rules.
Inappropriate Collaboration

1. A student showing another student his code.

2. A student copying code from another student.

86

www.manaraa.com

3. A student stepping another students logically throughptlogram. (Giving his the key to solving

the problem.)
4. A student helping other students during a test or quiz.

5. A student doing another student’s work (including onkssignments).

A.6.2 Ice Breaker

In order to prevent the students from feeling isolated inva @evironment with all new information,
students should be given the opportunity to get to know e#oéroAny method of socialization can be used,
and below is one possible game in which the instructor firepares a large collection of pairs of cards

containing matching terms. The goal for the student it to firematching term:
1. Pick a card.
2. Geta pen and paper (or a PDA and a stylus) ready.
3. When directed, find the person with the matching card. flisfites)

4. Tell each other your names, where you are from, your magom why you are taking this class. (If

this class is required, why you are in the major that requhissclass.) (2-3 minutes)

5. Give the person at least one good way to contact you (epteihe number, IM account). Write down

his name and contact information.

6. When directed to, introduce yourself to 3 more people agtdcgntact information from them. (2

minutes)

Cards: On each card, put 1) the term or definition for the cadd2) the matching terfdefinition the student

is looking for. Examples:
1. Kernighan — Ritchie
2. cat—display file contents
3. chmod - set permissions
4. cd - change directory

5. cp —copy

87

www.manaraa.com

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

dos2unix — convert windows files to unix files

. find — locate files

gzip — compress files

gunzip — decompress files

head — print beginning of a file

Is — list files

man — manual

mkdir — make a directory

more — displays one screenful at a time
mv — move

passwd — change password

ps — process status

pwd — print working directory

rm —remove

rmdir — remove directory

sftp — secure file transfer protocol
ssh — secure remote shell

tail — Print end of a file

tar — tape archive

vi — text editor

vim — vi improved

88

www.manharaa.com

A.6.3 Background Information
1. History of Computing

e 1623: Mechanical calculator. Wilhelm Schickard inventeel first known mechanical calculator,
which was capable of simple arithmetic. A similar mechaléchling machine was built in the

1640s by Blaise Pascal. Itis still on display in Paris.

e 1673: More advanced mechanical calculator. It was creatd®73 by German mathematician
Gottfried Leibniz, and it was capable of multiplication adigision. It was purely mechanical

with no other source of power.

e 1823: Charles Babbage began work on th&ddence Engine. He designed it, but it was com-

pleted by a Swedish inventor in 1854.

e 1833: Charles Babbage began work on the Analytical Engih&as never completed, but it
introduced an important concept: a general-purpose maatapable of performing fierent

functions based on programming.

e 1834: Ada Byron (Lady Lovelace, daughter of poet Lord Bynaa} impressed with the concept
of the Analytical Engine at a dinner party. She created pfanfow the machine could calcu-
late Bernoulli numbers. This is regarded as the first “compptogram,” and she as the first

“programmer.” The Department of Defense named a languada™# her honor in 1979.

e 1890: punched cards were used by Herman Hollerith to autothatCensus. The Concept of
programming the machine to perfornffgrent tasks originated from Babbage. Punched cards
were based on Joseph Marie Jacquards device to automatsg/é@ms. Hollerith founded a

company that became International Business Machines (tBMjarket the technology.

e 1939: prototype of the first electronic computer. It was agsed by John Atangband Cliford
Barry. John Atansd proposed the concept of using binary numbers. Complete@42 ii1sing

300 vacuum tubes, it could solve small systems of linear tousa

e 1946: ENIAC (Electronic Numerical Integrator and Compteas completed by Presper Eckert
and John Mauchly. It used 18,000 vacuum tubes and occupi@dg 30 foot room. It could be
programmed by plugging wires into a patch panel. Becausestiiie of programming required

intimate knowledge of the computer, it was verfhidult to do.

89

www.manaraa.com

e 1946: John von Neumann architecture stored-programmingegi. He (and others) suggested
that programs and data could be represented in a similar waystored in the same internal

memory. All modern computers store programs in internal wnrym
e Four generations of computers

(a) Vacuum tube (1939)
(b) Transistor (invented in 1947, used in IBM 7090 in 1958)

(c) Integrated circuit or chip (inventedin 1959, used in IBBD in 1964), which is a small wafer
of silicon that has been photographically imprinted to eimt large number of transistors.
(d) Large-scale integration: microprocessor (1975). Timé&re processing unit is stored on a

single chip of silicon.

¢ In the early 1970s, Robert Noyce, one of the inventors of tivegrated circuit and founder of
Intel speaking of a computer chip compared to the Eniac: s'I20 times faster, has a larger
memory, is thousands of times more reliable, consumes thvempaf a light bulb rather than that
of a locomotive, occupies/30,000 the volume and costglD,000 as much” (Source: Roberts,

Eric S.The Art and Science of.@ddison-Wesley Publishing Company, 1995).
2. Computer Hardware

e Central Processing Unit (CPU)
— Brain of the computer
— Performs the actual computation and controls the activfith®entire computer.
— In current computers, a CPU is an integrated circuit
» Consists of a tiny chip of silicon with millions of transissomprinted onto it.
» Capable of carrying out simple arithmetic and logical opieres
e Primary Storage: Main Memory
— Type of data storage device: a piece of hardware capableraigtand retrieving information
— Storage device used while the program is actively running
— Current computers use RAM (random access memory) chips.

*» Random access means that any location can be accessed mhanyltike a DVD as

opposed to a cassette tape.)

90

www.manaraa.com

* Built from a special integrated-circuit chip
* Very fast, but relatively small

» Data is lost when the computer is turnefl o
e Secondary Storage

— Hardware device that stores permanent data.
— Slower than RAM.

— Current computers use magnetic disks for data storageairspinning platters coated with

magnetic material, as well as optical storage, and solig sliaks.

— Examples:

» Hard drive

« Floppy disk

*» CD or DVD (optical)

* Flash drives (solid state)

e |/O (InpufOutput) Devices

— These devices are the tools by which the user communicateshve computer
— Examples of input devices:

» Keyboard

* Mouse

* Touch screen

* Scanner
— Examples of output devices:

* Graphics card

* Screen

* Printer

* Speaker

e Bus. The components (CPU, GPU, primary storage, seconttamge, 1O devices)are all con-

nected by a communications bus.

91

www.manharaa.com

e Graphical Processing Unit(GPU): high end graphics card® Ipaocessors, called GPUs, that

handle a great deal of image processing for display and@®&Js in overall processing capabil-
ity.
3. Computer Science

e Related Terms

— Programming: providing a computer with a set of instrucgion
— Software: the name for programs created for a computer. Aeseze of steps that can be
interpreted by the hardware of the computer.

e CS Definition: The creation of the steps necessary for a céenpaisolve a problem.

e CS Definition: “the science of problem solving in which thdusimns happen to involve a com-

puter” (The Art and Science of By Eric S. Roberts. Addison-Wesley, 1995).

4. Exercise in giving instructions. This suggested exereiposes students to the concepts involved in
giving precise instructions to a machine and thus how a CPtksvaTogether, the students work out

the commands needed by a robot to perform addition.

e Robot’s Abilities
(a) Speaks and understands English.
(b) Can read and write any word or number.
(c) Can search for a number or word, given a starting and grbimt.
(d) Obeys any written command it understands.
e Limitations
(a) Does not have short term memory. (It cannot even remeebember if it does not write it
down.)
(b) After it performs an instruction, it immediately forgevhat it did.
(c) Cannot do arithmetic at alll.
(d) Cannot count.
(e) Cannot make decisions. It simply obeys commands.

(f) Can obey only 2 spoken commands:

92

www.manaraa.com

— “Write the following instructions at location xxx: . . .
— “Begin sequentially following instructions starting athtion xxx.”

e Resources

(a) Has a list of numbers 1 through 10 at the location on thedstarting with 100.
(b) Has a list of blanks for writing numbers or words startatdocation 200.
(c) Has a list of blanks for writing instructions to followesting at location 300.
e Tasks
(a) Give instructions to a robot to add 6 and 2 and give the angwthe format “Six plus two

equals xxx.” The class will work through this. It will take avf tries to understand the

problem and solution, so do not be afraid to guess.

(b) Break up into groups of five (5) and make instructions foolaot to add any two numbers
from 1 to 10 whose sum is no larger than 10. (e g543+7, etc.) Same format for answer:

“xxx plus xxx equals xxx.”

(c) In your same group, make instructions for a robot to addtauo numbers from 1 to 100

whose sum is no larger than 100. (e.g+83, 95+2, etc.)
(d) Participate in instructor-led discussion of how thisuele relates to real computers.

e Example solution

(a) Write the following instructions beginning at locatid@0.
i. Write the number “6” at location 200.
ii. Write the number “2” at location 201.

iii. Write “100” at location 202 to represent the startingdtion for the search for the num-
ber stored at location 200.

iv. Checkifthe memory location stored at 202 holds the sanmelyer as is stored at location
200. As long as it does not, update location 202 to hold thémexnory address. (After
this loop is complete, location 202 holds the address of tieber held at location 200
(6).)

v. Write “100” at location 203 to represent the starting kimafor the search for the num-

ber stored at location 201.

93

www.manaraa.com

vi. Checkifthe memory location stored at 203 holds the sanmeber as is stored at location

201. As long as it does not,
A. Update location 202 to hold the next memory address.
B. Update location 203 to hold the next memory address.

vii. Write on the board the value at location 200, then “ plughen the value at location 201,

then “ equals ", then the number at the location stored atilmc202.

(b) Execute instructions from line 300.
5. Introduction to levels of languages

(a) Lowest level: absolute machine code (binary code)
(b) Assembly language
e Symbolic representation of machine code

e Translated into binary code with an assembly
(c) High-level languag€ompiled Language
e One high-level command translates to many assembly comsnand

e A compiler converts the high-level source code into mactémguage for the appropriate

computer

(d) High-level languagénterpreted Language: similar to a high-level languagetbeattranslation

from the high-level command to machine code it performedattime.

6. Introduction to compiler concepts. A compiler is a pragrhat converts a higher-level language to a

lower-level language.
7. Introduction to the types (levels) of software

e Application Programs, e.g. editors
e Utility Programs, e.g. compilers

e Operating Systems
8. Introduction to the Unix operating system: history of kIni

e 1964: AT&T Bell Labs, General Electric, and MIT wanted to & a multi-tasking, multi-user

operating system.

94

www.manaraa.com

— Previous computers were single threading: one programiauea t
— The new operating system named Multics (MULTiplexed Infation and Computing Ser-
vice)
e Four years later, Bell Labs withdrew from the project, sitceras able to support only 3-4
concurrent users.
— The Multics team at Bell Labs missed the collaborative emvinent of all working in the
same room.

— Ken Thompson lost his game machine. (Space-travel sinonlat developed on the Multics

system.)

— Thompson found an old Digital Equipment Corporation (DEOPP7 computer and moved

his code over to that.
e The old Bell Labs Multics group starting developing codetfae PDP computer.

— This was the beginning of the Unix Operating System.
— Brian Kernighan named the system UNICS (UNiplexed Infoioraend Computing Ser-
vice).
— In one month, Ken Thompson built the core of Unix.
— Bell Labs’ management asked about the new toy.
— Thompson said they were building a text-processing system.
e Management gave them a bigger computer.
— Unix was written in PDP-7 assembly.
— The group needed to transition the code from PDP-7 to the mea&ehine.

— The group decided to rewrite Unix in the high-level langug@ondensed BCPL), but B

was too slow (interpreted language).
¢ Dennis Ritchie created a new, high-level language calledtiewhich they could rewrite Unix.

— Because Unix was written in a high-level language, it candrtgol (moved) to other hard-

ware platforms (computers withféierent CPUs, memory, afal peripheral devices).

— In the 1970s, Bell Labs was not allowed to sell software.

e The team gave away copies of the source code for free.

95

www.manaraa.com

— Unix source code is still shared today in the form of Linux.
— Unix and C became popular, becausefteced tremendous computationdligiency, and
everyone could get it for free.
— Giving away code necessitated writing documentation attaitode.
e The team created documentation to go with the code in the édmman pages.

Source: Bulletproof Unix by Timothy T. Gottleber. Prentidall: 2003.
9. Introductionto C

e C was developed by Dennis Ritchie in the early 1970s.

e Cis a structural, general-purpose, high-level language.

e The C language strongly reflects its tie to assembly langaadéhelps students understand how
the computer works.

e Statements in C are terminated by semicolons and spacirgraiehange the meaning of the

program.

A.6.4 Phasel

Phase one of the semester-long, target problem is the@neta 1-pixel image in Portable Pixmap
(PPM) format that is printed to standard out. Required Maletext editor, C compiler, library functions,

I/O functions, preprocessor directives, the main functidtiyIFormat, binary data, ASCII data.

1. Create a program file. With a Unix environment, studemsuse GUI text editors or console-based text
editors. The benefit of console-based text editors is thaitability through simple remote connections
such as ssh (secure-shell). While editors suckiasay be quite powerful, students are likely to
initially benefit more from simplicity of operation, and argile editor such as pico might be a better
choice. Whatever they use, A C program file should be givemaicase name and end with the

extension.
pico image.c
Once the file is opened, students can modify it as needed apdtsa

2. Include the library functions needed to output informiatio standard out. A function is a group of

commands to be executed sequentially, and library funstasa available to perform common tasks.

96

www.manaraa.com

In the case of this program, the only functions needed arestdnedard input and output functions
specified in<stdio.h> file. These functions allow programmers to read data fromlageal file
called “standard in” (typically the keyboard) and to writeta to the logical file called “standard out”

(typically the screen).

To gain access to the needed library functions, programmingt “include” the file declaring them. In
C, the#include directive has the C preprocessor copy the contents of thepieified into the current

file.

The C preprocessor is a tool for preparing a C source file toobgpded. Some of the things the C
preprocessor handles include removing comments (any &ween an opening comment marker
and a closing comment markey), including specified files, and replacing constant namé!s thieir

values (such constants are defined with#lefine directive).

. Create the main function. The “main” function is the staytpoint of all C programs. To create the
main function, type the name “main” followed by open and etbparentheses (non-empty arguments
inside the parentheses will be used later) followed by amimgebrace {). After the code in the main,
the function is ended by a closing bra¢e Oepending on the version of the compiler, the main may
be required to specify a return type mifit. It is probably best to delay an explanation of its meaning

until later.

. Output to standard out a PPM image file header. Portablad&ix(PPM) image format is a very
simple, uncompressed file format. The format consists of @&Wheader followed by binary image

data. Here is the format specification (in order as it ocauthé image file):
(@) A “magic number” for identifying the file type. A full-col, binary PPM image’s magic number
is the pair of characters “P6".

(b) Whitespace (spaces, tabs, carriage returns, line YeR@TE: Characters from a “#” to the next
end-of-line character are comments and are ignored. Comsroan occur anywhere in the PPM

header.
(c) The width, formatted as ASCII characters in decimal.
(d) Whitespace.
(e) The heightin ASCII decimal.

() Whitespace.

97

www.manaraa.com

(g) The maximum color value in ASCII decimal. It must be lésst 65536 and more than zero. The

most common value is 255, which indicates one byte per caomonent (R, G, B) per pixel.

(h) A newline character or other single whitespace charadtete that in Windows, new lines are
expressed as two characters. Be sure to restrict the whitesgiter the maximum value to a

single character.

(i) The line of image data. This is a raster of “height” rowspirder from top to bottom. Each row
consists of “width” pixels, in order from left to right. Eaglixel is a triplet of red, green, and blue
samples, in that order. Each sample is represented in poagyblby either 1 or 2 bytes. If the
maximum color value is less than 256, it is 1 byte. Otherwiss,2 bytes. The most significant
byte is first. There is no whitespace between bytes. In pdaticthere are no newline characters

in the image data.

The header of the PPM file (all but the raster of data) is in A8lelformat. ASCII stands for American
Standard Code for Information Interchange. It is a charastieoding used to represent text with values
in the range [0,127]. Since all information on a computeepresented numerically, characters must
also represented as numbers. Thus, in an ASCII (or textefileh character is represented by a number.
For example, A is represented by 65, B by 66, C by 67, . . . and ZylLowercase letters are in
the range 97-122. C provides functions for outputting AS&aracters to standard out. One useful
function isprintf. printf is a function for formatting and printing (outputting) da&ag.

printf ("Hello, World!\n");

Notice that “Hello, World\n” is in quotation marks. These marks specify that

“Hello, World!\n” is text. Additionally, “Hello, World\n” is in parentheses. These parentheses specify
that “Hello, World\n” is an argument being passed to #heintf function. The above line of code
will output “Hello, World!” and a newline character to staard out. Output devices (displays, printers)
interpret the newline character as a signal to perform afied and a carriage return. A backslash is
considered an escape sequence and\tlieharacter is a special sequence for representing a new line
This character can be generated from the keyboard by typatd¢, j”. (Notice that the command ends
with a semicolon. C statements are terminated by semicl@hsisprintf can be used to output the

PPM header.

. Output the binary image data to standard out. The imageigdatot ASCII but is instead in binary

format. The colors of the pixels in a PPM file (with a maximuniuesof 255) are represented by three

98

www.manaraa.com

#include <stdio.h>

main () {
printf ("P6\nl 1\n255\n");
printf ("%c%c%c\n", 255, 0, 0);

Algorithm .1: Output of a single-pixel image file

bytes. The first byte is the value of the red channel in thelpike second is the value of the green
channel, and the third is the value of the blue channel. A eddevof of O is no red contribution, and
a value of 255 is full red contribution. Thus, if the bytes a6®, 0, 0, the color is red. The bytes 255,
255, 255 represent white and 0, 0, 0 represent black. In tampbe image, only one pixel value needs
to be represented, and it will be represented by three bytdata for the three color channels. The
data must not be converted to ASCII format. Note thaint£("255, 0, 0"); would produce nine
bytes of output, not three. The printf function uses whatcatked “format codes” to specify how data
should be output. One such format codé&ds This format code forces the data to be output directly
without conversion to ASCII. Using this format code, a redapican be specified in the file with the
following command:

printf(’’%c%c%c’’, 255, 0, 0); This command creates the three bytes needed to represent a

pixel and gives them values specifying full red contribati@ith no green or blue contribution.

6. End the main function with a closing brace. The code to pcedin image that has only one pixel with
a value of red is shown in Algorithm .1.
Thus, the whole program is the following code and will outpsingle red pixel: Algorithm .1.

7. Compile the program. If the file is in a Unix environmente tisegcc compiler: the GNU project C
and G++ compiler. Thegcc compiler will convert a correct f€++ program file into executable binary

code. The default location of the codeaisout. The location of the generated executable file (among

other things) can be specified by the arguments tgtitecommand.

gcc image.c

8. Run the program and redirect the output to fiedent file. When the image program is executed, by
default its output will be printed to the screen. To send thipot to a file, use 7O redirection.” JO

redirection allows the user to specify where standard dugparitten and from where standard input

99

www.manaraa.com

is read. Output is redirected using the “greater than” syymbo

./a.out > out.ppm

The file name can be anything, but it should end with the PPMreston for identification purposes.

9. View the output file. PPM is not a common image file, but it barviewed by Gimp, the GNU Image
Manipulation Program, which is freely available for maneogting systems. The “display” command,
which is part of the ImageMagick package, is also availahlmost Linux systems. Additionally, Unix

provides a tool for converting PPM to the more common PNG &irm

pnmtopng < out.ppm > out.png

or, with ImageMagick,

convert out.ppm out.png

A.6.5 Phase?2

Phase two is the creation of an 800 by 600 PPM format imageuiRmtMaterial: variables, data
types, variable declaration, variable assignment, cardit expressions, variable incrementation, counted

loops.

1. Create a variable to keep track of the number of pixelshihaé been printed. An image with a width
of 800 pixels and a height of 600 pixels has 480,000 pixel @aade up of three bytes. Besides
being unnecessary, writing 480,000 printf statementsiméndously diicult. Instead, the computer

program can be instructed to repeat a command a specifiedanahtimes.

An instruction specifying that a block of code is to be repdas called a “loop.” If the loop executes
a specified number of times, it is called a “counted loop.” Aicied loop fits the problem of creating

480,000 pixels.

To use a counted loop, there must be a way to count how many timedoop has been executed. The
way to track information such as a counter is a “variable."akiable is a named space in memory that
can store information. In this case, the information neddeah integer (a whole number). To create
an integer variable in C, specify that the variable is angeteand give it a name. The name can be

anything that starts with a letter and is made of only leftetsnbers, or underscores. In C, variables

100

www.manaraa.com

#include <stdio.h>
main () {
int 1i;
printf ("P6\n800 600\n255\n");
for (i=0; i < 480000; ++i) {
printf ("%c%c%c", 255, 0, 0);
}

Algorithm .2: 800 by 600 image creation

must be declared at the top of the block of code. Thus, to ematnteger named “i” to track how

many times the loop has executed, use the code shown in &lgor2.
2. Update the PPM header print statement to specify a wid800fand a height of 600.

3. Created a counted loop to output the 480,000 pixels. Theted loop in C is the “for” loop statement.
There are several parts to the for loop: the keyword “for”jratialization section for assigning the
starting value(s) to use in the loop, a test condition sgewfhow many times the loop repeats, a step
section for updating the variable(s) controlling the loapd the block of statements to be repeated.
In the case of the image, the variable “i” should be given tbgitining value 0. The condition for
looping is as long as “i” is less then 480,000. (Once it hashied 480,000, all the pixel values have
been printed.) The step section should increment “i” to v numerical value. To assign i to a value
of zero, use the expressiar0;. To test whether i is less then 480,000, tise 480000;. Note that
comments are not used in numbersin C. To increment i to thevadue, use the operates. The++
operator changes the value of the variable to be the nextenhohber. The block of statements to be

looped through is contained between opening and closintgbra
4. Compile and execute the program, redirecting the outpatppm file. The resulting image should be
a solid red image of size 800 by 600. For extra credit, stigderaty add stripes or patterns.
A.6.6 Phase3

Phase three is reading a file (image file) and printing it badk ®his phase draws from previous
knowledge and is working toward the goal of reading in imageanipulating them, and outputting them.

Required Material: standard input, file streams, unsigted, conditional loops, bytes, binary data.

1. Create a new file that #includesdio.h and has a main.

101

www.manaraa.com

2. Create a variable to hold each datum as it is read read fierfil¢. Since the file to be read is a PPM

image file, the variable must be able to hold ASCII charadesbytes of image data. A “byte” is 8
bits or 8 binary digits. All data on a computer is stored aghjrdigits (0 and 1). One binary digit (bit)
can have two possible values: 0 or 1. Two binary digits cad$fdur possible values: 00, 01, 10, and

11. Eight digits can hold 256 fierent values.

The data typamnsigned char holds a byte of data with values in the range [0,255] (258edént
values). Unsigned chars can thus hold ASCII values whichratiee range [0,127] and the bytes of

image data, which are in the range [0,255].

. Read in the first character in the input file “stream.” (InRiMPfile, the first character is 'P’.) A file
stream is an access point for a file within a program. Openingraed file within a program will
provide the associated access point or stream name. Staimgart is always open, and its stream
name isstdin. Each time a character is read from a stream, the locatian fahich to read the
next character is moved forward. Thus, sequential readst iessequential values from the stream.
A library function in C that can be used to read charactensfeostream ifgetc. (scanf, fgetc,
andgetchar are others.}getc starts with an “f” to indicate it is a file stream-related ftina, and
“getc” indicates that is gets (reads) a characfgetc returns a character read from the specified input
file. The input file used for this program is standard inputwgitreamstdin in C. To store the value

returned from the function, assign to “ch” the result of thadtionfgetc().

. If the value assigned tch is valid data and not a marker indicating the end of the filetirout, and
continue to read and print out bytes of data as long as thesale valid. The ends of files in computer
file systems are marked with what is called an “end of file” (ECtraracter. The actual value of EOF
is system dependent, but C provides a functibeoff) that indicates if the EOF character has been
read. The EOF character must have already been red@édrto confirm that it has been reafleof
requires one parameter: the file stream which is being read:fstdin. Therefore to test if the EOF
character has already been encounteredfasé(stdin) ;. This function returns a value of zero if
the end of file has not been encountered yet and a non-zemWélhas. As long as the program has
not encountered the end of the file, it should print out theatter just read and read a new one. This
process may be repeated many times. Unlike the previousmgarhprinting an image however, the

actual number of times the commands must be repeated is wnkno
A conditional loop allows a group of commands to be repeatedr unknown number of times based

102

www.manaraa.com

#include <stdio.h>

main () {
unsigned char ch;
ch = fgetc (stdin);
while (feof(stdin) != 0) {
printf ("%c", ch);
ch = fgetc (stdin);

Algorithm .3: Complete program to read in and print back out a file

on a given test condition. In C, conditional loops are cafletile” loops. These loops repeat while
a given condition has a non-zero value. (In C, zero is falgskraam-zero is true.) To repeatedly read
characters, confirm they are not at or past the end of the fitepeint them out, use a ‘while’ loop. The
while loop has 3 parts: the keyword “while”, the conditiorparentheses, and the block of statements
to repeat inside opening and closing braces. The conditivlobping for this program is to continue
as long ageof returns a false value. Since while loops continue for trdeas(not false values), the
returned value ofeof must be negated, using the “!” operator. A “!” before a trupression results

in a false expression, and a “!” before a false expressiomtem a true. Algorithm .3 pulls all this
together: testing whether standard in has been read pasnthef file, printing out the character read,

and reading the next character.

5. Compile and run the program, redirecting input usingth£i 1ename notation and redirecting output

using the> filename notation:

./a.out < image_in.ppm > image_out.ppm

A.6.7 Phase4

Phase four is reading a PPM image file and outputting the witith height, and the total num-
ber of pixels in the image. Obtaining this information regsiknowledge of the image format, unlike the
mere copying performed in the previous stage. Required letye: reading integers, addresses, character
comparisons, nested loops, if statements, unreadingelata,conditions, function return values, functions,

boolean expressions, multiplication, checking for wiptese, stdlib.h, ctype.h.

1. As well asstdio.h, #include thestdlib.h andctype.h files. The program will be reading and

103

www.manaraa.com

altering a PPM file, and it must be confirmed immediately thatuser indeed provided an image in
PPM format as expected. If the user did not, an error mess$emadcsbe printed, and the main function
should return a value indicating its failuretdlib. h provides constants for indicating the success and
failure of the main functionctype.h declares functions for determining the type of data reachih a

will be useful in removing the commands and spaces in the file.

. Declare a function for skipping over the whitespace amdroents in the image file. The function will

not return a value and should thus be marked as “void.” Theemaay be anything.

. Begin the function by reading in a character and detenginihether it is a pound sign (#) or a whites-
pace character (e.g. a space, tab, carriage return, neweliog. If it is whitespace, it should be
skipped. If it is a #, the remainder of the line is a comment alh characters from # through the
next newline character\(h’) should be skipped. If it is neither a comment nor a whitesgpcharacter,
no more reading should take place, because the functionngeading useful information from the
header, such as the width, the height, or the maximum valhes The function loops as long as the

next character read is whitespace or part of a comment.

Determining if a character is a whitespace character islsimuype . h declares a function for deter-
mining if a character is whitespace called “isspace().eturns a non-zero value if the passed-in char-
acter is whitespace. “isspace()” expects the argumenégasgo be of typant instead of a character.
An integer usually is four bytes and can hold values in theedr2,147,483,648 — 2,147,483,647],
which more than covers the character range of [0,255]. Tthestacters in this function will be de-

clared of type “int” merely for compatibility with the “isgre()” function.

Determining whether a character is a “#” requires use of thmagarison operator==." Unlike the
assignment operator=£"), the comparison operator returns a true value if the twigh being com-
pared are equal and false otherwise. A mistake programrftersroake is to accidentally use™sign
instead of ==". The compiler does not catch this error because the assighrsayx=4, returns the
value assigned, in the cagesowhile (x=4) is legal, if not terribly useful. The result is that instead
of comparing the two values, the first value is assigned te#ivend. To prevent this common bug, if
either value is constant, it should occur first. e3g= x is not valid, because 3 cannot be assigned a
new value. Thus, the compiler will catch the mistake andt@merror message to correct the lingto
== X.

To specify a single character in C, place it in single quoteg. ‘#’, ‘a’, ‘1’, etc.) Thus, use the

104

www.manaraa.com

following notation to determine if a character is a pounchsich == ‘#’

The skip function must continue as long as either condiidnie. Thatis, if the character is whitespace
or a pound sign, the loop must continue. To specify an “or” cbadiin C, use the double pipes}.”
The pipe is typically located above the backslash on thedayband appears to be a broken line. Two
of them are the C boolean operator “or” e.g. to determinesfa 8 or a 5, use the following statement:
3==x || 5==x.

To begin the whitespace skipping function, first declare rgatsée of typeint to hold the character

currently being read, and read in the first character.

Next, create a while loop that continues as long as the ctariaaeither whitespace or a pound sign.

. Create another loop inside the first loop to skip commeXxksop inside another loop is called a “nested
loop.” Each time the outer loop executes, the inner loop éceted and repeats until its condition fails.
In this case, the inner loop will specify that as long as ttaeelines beginning with a pound sign, to

skip them.

If the character is a pound sign, the rest of the line must gpski, using another nested while loop.
This third loop will read characters until the characterhis hewline characteit’. Thus, the loop
continues as long as the charactend the newline character. The operator for determining if two

items are not equal is the=" operator.

. Create another loop inside the first loop of the functiondntinue reading characters as long as they
are whitespace characters.

This is the end of the outer loop as well, so it should be cleg#ua brace.

. After the loops have completed, put back the last charaesel. The loop completes only after a non-
comment, non-whitespace character has been read. Thecthiais important data and should be put
back into the file stream to allow it to be properly read lafEine C function for putting a character
back into the stream is “ungetc”, and it accepts two argumehe character to put back (whatever is

stored in “ch”) and the file stream in which to put it in (“stdinAfter putting back the character, close

the function.

Thus, the entire function is shown in Algorithm .4.

. Update the main to have a “return value” of type “int.” Alirfctions in C may return a value. That

is, when the function is completed, it returns a value to tlaeg from which is was called. Main

105

www.manaraa.com

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

void skip_comments_and_ws () {
int ch = fgetc (stdin);
while (’#’ == ch || isspace(ch)) {
/% remove command line, up to but not including the
newline character */
if (’#° == ch) {
while (’\n’ != ch) {
ch = fgetc (stdin);
}
}

/% remove whitespace, including the newline, at the end
of a comment. */

while (isspace(ch)) {
ch = fgetc (stdin);

}

}
ungetc (ch, stdin);

Algorithm .4: Complete function for skipping over comments and white spac

functions traditionally return an integer value specifyimhether the function was successful. A zero
value indicates success and all other values indicaterdailtio specify that the main function will

return an integer, place the keyword “int” before the maindtion: See Algorithm .5.

8. Declare variables to hold the width and height and the smmagimber. The magic number is two

characters: a ‘P’ and a ‘6.

9. Read in the first two characters in the file and confirm they #ire ‘P’ and ‘6’. If they are not, end
the function early by returning an error code. The “retuatesnent” in a function immediately ends
a function and (if given a value) returns the specified val&er the error code, use the constant
defined instdlib.h: EXIT_FAILURE. (A constant is similar to a variable except that its valuencd
be changed after its initial assignment. Constants ard&itadlly assigned names that are all capital
letters.) Of course, it is possible to simply return an ietegalue, but the constantimproves readability

and guarantees a valid error code.

To check whether the characters are correct, use an “igstant. An if statementis similar in structure

and behavior to a while loop. Theftérence is that an if statement is executed only once when the

106

www.manaraa.com

int

main () {

int width, height;

unsigned char letter, number;
letter = fgetc (stdin);
number = fgetc (stdin);

if (P’ != letter || ’6’ != number) {
printf ("Error: input file is not PPM format.\n");
return EXIT_FAILURE;

}

skip_comments_and_ws ();

scanf ("%d", &width);

skip_comments_and_ws ();

scanf ("%d", &height);

printf ("width: %d\n", width);

printf ("height: %d\n", height);

printf ("total pixels: %d\n", width*height);
return EXIT_SUCCESS;

Algorithm .5: Main function that returns an integer

condition is true. There are three parts to an if statemdrd: keywordif, the condition, and the
statement block to execute if the condition is true. The d@@ndin this case is the first character is not
‘P’ OR the second character is not ‘6’. If the condition isgyan error message should be printed and

the function should return an error code.

10. Call the function for skipping comments and whitespaoee there may be any number of comments

11.

and whitespace characters between the magic number anddtie w

Read in the width as an integer. Until now, all data that been read has been read as characters.
An integer is represented in an ASCII file as multiple chaesstone for each digit. The multi-digit
integer should be read in and converted to one complete nustdred in 4-byte, integer format. In

C, thescanf function will read in data in multiple formats, dependingtbe format code provided.
The format codes used l¢anf are basically the same as the codespnint £. The format code for
reading an integer is%d” (decimal). The arguments to the function are text spesgythe data type to
read in and then the address of the variable to store the etadrd The data type of the variable must
match the format code specified, or the results could be iacbrThe address of the variable may be

obtained using th& operator. Similar to printf, scanf can read multiple itemgach call, but only one

107

www.manaraa.com

integer needs to be read at this time.
12. Skip the comments and whitespace after the width andthedkeight.

13. Print out the width and the height using printf. To maledhtput more readable, put some text before

the format code specifying what data is being displayed.

14. Print out the total number of pixels. The total numberigé|s is the width multiplied by the height.

To multiple two numbers in C, use tieoperator.

15. Atthe end of the main function, return the constant iatiligy that the program was a success.

A.6.8 Phaseb5

Phase five is reading a PPM image file, printing it to standatg and outputting the width, the
height, and the total number of pixels to standard errorcéthis phase does not have a great deal of new
information, it is a good time to refactor the code to creabetier organization and a header file. Required

knowledge: outputting to standard error, addresses, gmirtieader files.

1. Create a header file to hold all the preprocessor direxc{inelude statements) and a forward declara-
tion for theskip_comments_and ws function. (The header file should be named after the nameeof th
C file with the extensionh.) Forward declarations are similar to the first line of a fiimt, except that
the parameters do not need to be named and, instead of a lflsEt@ments, ends with a semicolon.
Forward declarations provide information to the compileoat the function before the actual code is
compiled, meaning that the function may exist in fietient file or after that point at which it is called.
If a function has no parameters, it is best to specify thaptirameters are “void” in order to prevent the
compiler from assuming that the forward declaration mechlyse to not specify parameters. Forward

declarations may be delayed to give students practice dgffanctions before use.
2. Add an include statement at the top of the C file to inclugehtsader file.

3. Create a “reatheader” function to read the entire header, and return tdeéhwihe height, and whether
the function was successful. Since functions can returm oné value, addresses (via pointers) must
be used instead to return additional information. It hasaly been demonstrated that scanf uses

the address of a variable to store information. Similathg tead header function may accept the

108

www.manaraa.com

#include "print_img.h"
int read_header (int *width, int *height) {
int maxVal;
unsigned char c, letter;
c = fgetc (stdin);
letter = fgetc (stdin);

if (c !'= ‘P’ || letter != ‘6’) {
printf ("Incorrect Magic Number\n");
return 0;

}

skip_comments_spaces ();
scanf ("%d", width);
skip_comments_spaces ();
scanf ("%d", height);
skip_comments_spaces ();
scanf ("%d%c", &maxVal, &c);
return 1;

Algorithm .6: The complete function for reading the ASCII header

addresses of width and height variables and store the vedadsnto those, e.g., a calltead_header

would be the followingread header (&width, &height);

To accept addresses as parametersr#ad_header function must specify the data types of the vari-
ables to be integer pointers. A pointer is an address in mgthat holds a particular type of data.

For example, an integer pointer is the address of an integmemory. The four bytes of data at that
address will be interpreted as an integer. To declare ablaria be a pointer, after the data type, use

an asterisk (*) before each variable that will be a pointay,,ént *i, *j;.

The integer returned will specify whether the read was sssfaé The function will put the width
and height in the address locations specified so that the fmaation will have access to them. The
width and height will be read in by scanf, which uses addiesSince width and height are already

addresses, there is no need for & before them.

The function will call the skipping function as needed topskbmments and whitespace, and it will
read all the information from the image except the image.déthe file does not begin with the magic
number,read_header will return a false value to indicate that reading failed.eThaximum value
will be assumed to be 255 and does not need to be returned.oDalgharacter should occur after the

maximum value, and it will be “eaten” as well. See Algorithn .

109

www.manaraa.com

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

void skip_comments_and_ws (void);

o

int read_header (int *, int *);

Algorithm .7: Header file

int main () {
int width, height;
if (!read_header (&width, &height)) {
fprintf (stderr, "Error: input file is not PPM format.\n");
return EXIT_FAILURE;
}
printf ("P6\n%d %d\n255\n", width, height);
for (i=0; i < width*height*3; ++i) {
c = fgetc (stdin);
printf ("%c", c);
}
fprintf (stderr, "width: %d\n", width);
fprintf (stderr, "height: %d\n", height);
fprintf (stderr, "total pixels: %d\n", width*height);
return EXIT_SUCCESS;

Algorithm .8: Invocation of the header-reading function and error tgstin

4. Add a forward declaration fatead header function in “printimg.h.” See Algorithm .7.

5. Update the main function to call redetader, passing it the address of locally-created widttheight
variables. If the header read is unsuccessful, an errorageshould be printed and the function should

be returned.

Error messages should not be sent to standard out becauseylyill end up in the same file to
which standard out is directed and 2) there is a special ostpeam, usually used for error messages,
called “standard error.” Data printed to standard errolmat be included with standard out (but it can
be redirected as well). To output to standard out, usefhentf function. Thefprintf function
accepts the file streamstderr andstdout, as well as user-created streams. It is followed by the

usual arguments used fprintf. See Algorithm .8.

6. Update the main to read thedth x heightx 3 bytes of image and output them to standard out, then

110

www.manaraa.com

print the width, height, and total pixels to standard erAatd text with the output of the width, height,

and total pixels to identify each element.

7. Compile and run the program, redirecting the input angwiappropriately. The image should be
copied to the new location and the width, height, and totatlper of pixels should be displayed on the

screen.

A.6.9 Phase 6

Phase six is reading a PPM image file and modifying to the soldhis phase leads to the final
goal of modifying an image’s color scheme to match anothagen The phase provides practice modifying
image data and may take many forms, including changing oaare's value to a fixed value, lightening
or darkening all values, converting the image to graysdéaserting scan lines, fading the colors, converting
to monochrome, etc. This is a phase where students can biévereRequired knowledge: information
regarding the selected file modification. Channel modificatnone; Grayscale: floating point; Scan lines:
nested “for” loops, modular arithmetic; conversion to mommme: chrominance and luminance formulas,
capping values, etc.

Update the main to make the appropriate modification to thelpread, using the previous phase

as the starting point for each version.
e Changing a channel to a fixed value.

1. Choose a channel to modify and a way to modify it. For thisneple, the blue channel will be

changed to zero.

2. Update the main function to read the three bytes repriesghie pixel and modify the appropriate

channel appropriately. See Algorithm .9.

The resulting image should clearly be lacking the blue ckann

e Increasingdecreasing all channels by a fixed value is similar to chapgimindividual channel. Be

sure to check for overflow (values over 255) and underflonu@sibelow 0).
e Conversion to grayscale

1. Change the output image’s magic number to be “P5.” P5 ispleeification for grayscale PPM

files. Instead of three bytes of data for each pixel, each gxepresented by one byte of data,

111

www.manaraa.com

int main (O {

int width, height, i;
unsigned char red, green, blue;
if (!read_header (&width, &height)) {
fprintf (stderr, "Error: input file is not PPM format.\n");
return EXIT_FAILURE;
}
printf ("P6\n%d %d\n255\n", width, height);
for (i=0; i < width * height; ++i) {
red fgetc (stdin);
green fgetc (stdin);
blue = fgetc (stdin);
printf ("%c%c%c", red, green, 0);

}

return EXIT_SUCCESS;

Algorithm .9: Madification of the image to exclude blue

which usually contains the “luminance” value of the pixelnhinance describes the amount of

brightness of the pixel: 0 is black and 255 is white. See Atgar .10.

. Update the function to read in three bytes (representiegixel) at a time, convert them to lumi-

nance, and output the result. In general, conversion of aB Bgfor specification to luminance
requires knowledge of the intended display device, butsomeable choice is to assume the NTSC
standard display, for which the weighting should be 30% %588 green, and 11% blue. Numbers
with decimal points are called “floating point values.” Riog point values are more flicult to
represent than integers, because of precision issuesefbherfloating point variables are used
only when necessary. “.3", “.59”, and “.11” will be handled ‘@oubles” in C. “Doubles” are
double-precision, floating-point numbers and require évéis many bytes as the smaller floating
point representation, “float.” Multiplying the unsignedachcters holding the bytes of image data
by doubles will produce an answer in double format. Sincedita will be printed in unsigned
character format, the result will be converted back taiasigned char by the assignment to
“lum.” All the information after the decimal point will betncated. e.gunsigned char c =
1.9999; results in 1. Addition of 0.5 followed by truncation is eqalient to rounding, and that

is used in the displayed code.

The output should be a grayscaled image.

e Darkened scan lines (like a TV with a fuzzy signal)

112

www.manaraa.com

#include '"grayscale.h"
int main () {
int width, height, i;
unsigned char red, green, blue;
unsigned char lum;
if ('read_header (&width, &height)) {
fprintf (stderr, "Error: input file is not PPM format.\n");
return EXIT_FAILURE;
}
printf ("P5\n%d %d\n255\n", width, height);
for (i=0; i < width * height; ++i) {

red = fgetc (stdin);
green = fgetc (stdin);
blue = fgetc (stdin);
lum = red * .3 + green * .59 + blue * .11 + .5;

printf ("%c", lum);
}
return EXIT_SUCCESS;

Algorithm .10: Image grayscaling

1. In the main function, create variables specifying how mata gap to have between each dark-
ened line and how wide each darkened line should be. (Thes#dshrobably be constants.) The
line width is the number of pixels wide each darkened lind &, and the gap is the number
of pixels between the start of successive darkened lineglitiddally, create three loop counter

variables. See Algorithm .11.

2. Update the loop for reading the image data to be threed&stioops: the first loop goes through
each row, the second through each pixel, and the third threagh channel of each pixel. This

step provides a loop counter variable for determining whash is currently being read.

3. The method of determining if a row should have a scan lin® i$) find the remainder after
dividing of i by the gap and 2) determine if it is a value less than the line dga@r example,
if the gap is 4, forrows 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, theaieders after division are 0,
1,2,3,0,1, 2, 3,0, 1, 2 respectively. Then, if these valuescampared to a line width of 2,
remainder values of 0 and 1 will be given darkened scan lifkat is, lines 0, 1, 4, 5, 8, and 9.
To calculate the remainder, use the modulo operatoh%B the remainder after dividing integer
A by B. After multiplication by a double, the result must be castk#p an unsigned character.

(See grayscaling.)

113

www.manaraa.com

int main (O {
int width, height, i, j, k;
int gap = 8, line_width = 2;
unsigned char channel;
if (!'read_header (&width, &height)) {
fprintf (stderr, "Error: input file is not PPM format.\n");
return EXIT_FAILURE;
}
printf ("P6\n%d %d\n255\n", width, height);
for (i=0; i < height; ++i) {
for (j=0; j < width; ++j) {
for (k=0; k < 3; ++k) {
channel = fgetc (stdin);
if (i%gap < line_width) {
channel = (unsigned char) (channel * .9);
}
printf ("%c", channel);

}
}
return EXIT_SUCCESS;

Algorithm .11: Adding scan lines

e Color fade. The concept behind fading is reducing the amotictlor in the image toward grayscale.
The image is not darkened, merely faded. The method of faditogadd a weighted grayscale amount
to the image. For example, if the image will be faded 50%, 5@&&ach color channel will be the color

value and 50% will be the grayscale value.
1. Create the necessary variables to hold the channel vahgegrayscale value, and the amount to
fade. The example is 50%.

2. Read in the pixels, one at a time, and compute the lumintorceach pixel. (See previous

description of luminance computation.)

3. Combine the current value of each channel with the luntieamlue. Use the specifieantto

weight the channel value and-lamtfor the luminance.

4. Output the resulting channel values. The output resoltishhave faded colors. See Algorithm

2.

e Monochrome conversion: converting the image into one witixed chrominance and varying lumi-

nance. Basically, instead of gray, the base color may be alay.cThe color value separate from its

114

www.manaraa.com

int main) {
int width, height, i;
unsigned char red, green, blue, lum;
float amt = .5;
if (!'read_header (&width, &height)) {
fprintf (stderr, "Error: input file is not PPM format.\n");
return EXIT_FAILURE;

}
printf ("P6\n%d %d\n255\n", width, height);

for (i=0; i < width * height; i++) {

red = fgetc (stdin);
green = fgetc (stdin);
blue = fgetc (stdin);

/* compute the grayscale value */

lum = red * .3 + green * .59 + blue * .11 + .5;
red = red * amt + lum * (1.0-amt);

green = green * amt + lum * (l.0-amt);

blue blue * amt + lum * (1.0-amt);

printf ("%c%c%c", red, green, blue);

}
return EXIT_SUCCESS;

Algorithm .12: Fade program

115

www.manharaa.com

brightness is called chrominance. The output image willhbé 255 possible shades of that color. In
order to apply the color in this way, it must be converted toranfat that separates chrominance from

brightness.

Television signals are transmitted in chrominance andramée (technically gamma corrected lumi-
nance. luminance (“Y”) represents the brightness of thegen@etween black and white) and is the
only part used by black and white televisions. Chrominasaepresented by two values, sometimes
called “Cb” and "Cr.” Cb isblue- Y, and Crisred - Y. To compute Cb and Cr from RGB values, use

the following formulas:

Chb=-.147xred - .289x green+ .436x blue (1)

Cr =.615xred- .515x green- .1 x blue (2)

Once the chrominance of a color is determined, the RGB vdltleeacolor with the same chrominance

but different luminance() may be obtained using the following formulas:

red=Y +1.14xCr 3)
green=Y —.395x Ch—- .581x Cr (4)
blue=Y +2.032x Ch (5)

1. Choose a color value to extract Chrominance from. The pi@im Clemson orange (255, 99, 0).

See Algorithm .13.

2. Create variables for holding the width, height, loop deurthe current pixel's RGB values, the
current pixel's luminance, temporary integer RGB valuethwvhich to perform mathematics,

and floating point variables for holdirgr andcCb.
3. Calculate the chrominance of the chosen color.

4. Read in the RGB values of one pixel at a time and computeithenbnce.

116

www.manaraa.com

int main O {

unsigned char mono_r = 255;

unsigned char mono_g = 99;

unsigned char mono_b = 0;

int width, height, i;

int r, g, b;

float cb, cr;

cb = -.147 * mono_r - .289 * mono_g + .436 * mono_b;
cr = .615 * mono_r - .515 * mono_g - .1 * mono_b;

if (!'read_header (&width, &height)) {
fprintf (stderr, "Error: input file is not PPM format.\n");
return EXIT_FAILURE;

}

printf ("P6\n%d %d\n255\n", width, height);

for (i=0; i < width*height; i++) {
r = fgetc (stdin);

fgetc (stdin);

b = fgetc (stdin);

lum = .3 * r + .59 * g + .11 * b;

(o]
1l

r = lum + 1.14 * cr + .5;

g = lum - .395 * ¢cb - .581 * cr + .5;
b = lum + 2.032 * ¢cb + .5;

if (r > 255) r= 255;

if (r < 0) r= 0;

if (g > 255) g= 255;

if (g < 0 g= 0;

if (b > 255) b= 255;

if (b < 0) b= 0;

printf ("%c%c%c", r, g, b);

}
return EXIT_SUCCESS;

Algorithm .13: Monochrome program

117

www.manharaa.com

unsigned char in[1280%*960%*3];

Algorithm .14: Declaration of an array of unsigned characters to hold intzge

5. Calculate new RGB values for the pixel based on the spdafieominance and the newly calcu-

lated luminance.

6. Cap the values of the newly-calculated RGB values to bledrrange [0,255]. It is possible that
the calculated values have exceeded the range of a bytee {haitthese if statements could be

improved as if-else statements. It is up to the instructdoaghether to introduce the concept.)

7. Assign the new values to the unsigned characters andtdbga using printf.

The resulting image should be in shades of Clemson Orange.

A.6.10 Phase7

Phase seven is reading a PPM image file into an array and makimydification. The storage of
the entire image at one time is necessary for the final go&aafing in two images entirely and manipulating
one based on the other. Modifications to the image may nowndkpe knowledge of more than one pixel
at a time. Such modifications include resizing, tiling, flalf-toning, rotation, blur, sharpen, etc. This is

another opportunity for creativity. Required knowledgeags, fread, fwrite.

1. Determine the size of the image to manipulate. The sizebm&pund using a viewer or by using the
Unix “head” command to look at the first few lines of the inptV®. e.g.head -3 in.ppm. The size

of the example image is 1280 by 960.

2. Create an array of unsigned characters in the main to Holeedmage data. An “array” is a contiguous
block of memory with a single name that can hold multiple ealof the same data type. An array is
declared with a data type and a length, or number of elemdrttsab data type. The notation for
declaring an array is “datatype arrayname [number of el¢sfier.g. int array [10]; The block
of memory allocated by such an array declaration is the ditteealata type (e.g. four bytes for int, one
byte for char, eight bytes for double) times the number ahelets. In the array for the example image
must hold 128& 960x 3 bytes. The multiplication by 3 is necessary because eaethipirepresented

by 3 bytes. See Algorithm .14.

3. Read data into the array using the “fread” function. Thied#l” function reads in the specified number

118

www.manaraa.com

fread (in, 1, 1280*%960*3, stdin);

Algorithm .15: Reading of the entire block of image data

of elements of the specified size from a specified file stredoein array. The benefit of “fread” is that
all image data may be read in one command instead of hundratiewsands. Individually reading
bytes of data is much slower than reading the entire blocknaeo The notation for fread is “fread
(location at which to store data, number of bytes for eacmeld, number of elements, input file
stream);” Note that the name of the array is equivalent taattdress of its first storage location. So,

&in[0] could have been used insteadiof See Algorithm .15.
4. Apply the appropriate modification. Examples are rot@&e&grees and sharpen.

e Rotate 90 degrees. The image will be rotated in the clockdiigetion 90 degrees. The height

will now become the width, and vice versa.

(a) Create the main with multiple loop counter variables, width and height, the new width
and height (after rotation), an array to hold the input imdgt, and an array to hold the

modified output data. See Algorithm .16.
(b) After reading in the data, swap the width and the heighttfe output image.

(c) Create three nested for loops: one for the rows in the neagée, one for the columns, and

one for the 3 bytes in each pixel.

(d) Place in the current location the appropriate byte chd@here are two key parts to handle:
1) getting the current location in the output array and 2j)iggthe appropriate byte. First,
the red byte of the first pixel in the upper left-hand cornettiarray element zero. In C, array
elements begin with element 0. (This counting scheme iscbais¢he fact that elements are
located by adding the element number to the address of thg, amd the first element is at
the beginning and needs nothing added.) To access elemese the notatiodn[0]. The
green byte is at array element 1, i.en[1], and the blue ain[2]. The red byte of the
second pixel on the first row is ah[3]. The red byte of the first pixel on the second row
is atin[width*3]. The reason for the multiplication is that the second ronwuceafter all
the first row data is complete, and there are “width” numbepigéls with 3 bytes of data.

The first red byte on th#" row is atin[i*width*3]. Finally, the blue byte on thg" pixel

119

www.manaraa.com

int main) {
int width, height, new_w, new_h, i, j, k;
unsigned char in[1280%960%3];
unsigned char out[960%1280%3];

if (!'read_header (&width, &height)) {
fprintf (stderr, "Error: input file is not PPM format.\n");
return EXIT_FAILURE;
}
if (width !'= 1280 || height != 960) {
fprintf (stderr, "Error: file is not the correct size.\n");
return EXIT_FAILURE;
}
fread (in, 1, width*height*3, stdin);
new_w = height;
new_h = width;
printf ("P6\n%d %d\n255\n", new_w, new_h);
for (i=0; i < new_h; i++) {
for (j=0; j < new_w; j++) {
for (k=0; k < 3; k++) {
out[(i*new_w+j)*3+k]=in[(Cheight-j-1)*width+i) *3+k];
}
}
}

// fwrite included in later code sample

Algorithm .16: Rotate 90 degrees

120

www.manharaa.com

on thei™ row is atin[(i*width+j)*3+2]: each pixel is 3 bytes away from the next (thus

the multiplication by 3) and the blue channel is the 3rd byftthe pixel, thus the addition

of 2. In the example, the current location in the output datspiecified as row columnj,

channek which is atout [(i *neww+j)*3 + k].

With the location to copy the data to in hand, where shoulditita be drawn from in order

to result in the rotation of the image? Consider an image withidth of 3 and height of 4.

The pixel layout is as follows:

0,040
3:343
66460
9:9%

Llgle 2252
444k, 5545
777 8848
1010510, 1111411,

If the image is rotated by 90 degrees, the layout of the nuetbpixels will be as follows:

Thus, the pixel in ronheight— 1 — j, columni, channek maps to the new image’s roi

columnj, channek.

e Sharpen image. Sharpening is done by the application of wobation filter, which is simply

a re-weighting of each pixel to distinguish it from surroiumgl pixels. To compute the final

value of a sharpened pixel, floating point values in a fixed 3 ffilter grid are multiplied by the

corresponding pixel values with the target pixel in the neddT'he products are then summed

to reach the final pixel value. The filter must be applied to3athannels of each pixel. See

Algorithm .17.

5. After modification, output the modified image data to staddbut using the “fwrite” function. The

“fwrite” function outputs the specified number of elementste specified size from the specified

array to the specified file stream. Similar to fread, usingtemo output the data in one block is more

efficient than writing it byte at a time. The notation for freadfiad (output data, number of bytes

for each element, number of elements, output file streange’Agorithm .18.

121

www.manaraa.com

float filter [3][3] = { { 6/3.0, -2/3.0, 0/3.0},
{ -2/3.0, 11/3.0, -2/3.0},
{ 0/3.0, -2/3.0, 0/3.0} };

/* After the image data is read into image */
for (i=0; i < height; ++i) {
for (j=0; j < width; ++j) {
for (k=0; k < 3; ++k) {

/* multiply each surrounding pixel by the
corresponding filter value and sum up the result
to find the sharpened value */

result = 0.0;

for (m=0; m < 3; ++m){
for (n=0; n < 3; ++n){

/% the row should be offset by m. If the row
would then be out of bounds, the modding and
addition of height will wrap it around */

row = (i + m - 1 + height)%height;

/% modding by width with column will similarly protect
from out of bounds. */
col = (j +n -1 + width)%width;
result+=filter[m] [n]
image[(row*width+col) *3+k];

}
/* cap the value */
if (result > 255) result = 255;

if (result < 0) result = 0;
newImage[(i*width+j)*3+k] = (unsigned char) result;

Algorithm .17: Applying the sharpen filter

fwrite (out, 1, width*height*3, stdout);

Algorithm .18: Output of the entire block of image data

122

www.manaraa.com

int main (O {

unsigned char *image, *newImage;

int width, height;

if (!read_header (&width, &height)) {
fprintf (stderr, "Error: input file is not PPM format.\n");
return EXIT_FAILURE;

}

image = (unsigned char *) malloc (width * height * 3);

newImage = (unsigned char *) malloc (width * height * 3);

fread (image, height * width * 3, 1, stdin);

/* modify data and place in newImage array */
furite (newImage, width*height, 3, stdout);
free (newImage);

free (image);
return EXIT_SUCCESS;

Algorithm .19: Dynamic memory allocation

A.6.11 Phase 8

Phase eight is reading a PPM image file of any size using dynamamory allocation. The size of
the image is unknown at runtime and is read from the headédreaitage file. The memory needed is then

allocated dynamically. Required knowledge: dynamic megnadlocation.

1. Declare two unsigned character pointers for the inputcaridut image data. These pointers will later

point to the dynamically allocated blocks of memory to hofthge data.
2. Get the width and height of the image header.
3. Dynamically allocatevidth x heightx 3 bytes for input and output data.
4. Read in the data and place the modified data in the outpay.arr

5. Output the array and free the allocated memory. See Algoril9.

A.6.12 Phase9

Phase nine is reading a PPM image file, converting it to CIElcAB®rspace, modifying the colors,
and printing it back out. The modification can be anythingrfrmodifying one component to produce an

interesting &ect or a color balancing algorithm. The matrix multiplicatifor this phase may be covered in

123

www.manaraa.com

void multiply3by3 (float m1[3][3], float m2[3][3], float result[3][3]) {
int i, j, k;
for (i=0; i < 3; ++i) {
for (j=0; j < 3; ++j) {
result[i][j] = 0;
for (k=0; k < 3; ++k) {
result[i][j] += m1[i][k] * m2[k]I[j];
}

Algorithm .20: 3 by 3 multiplication

the laboratory setting or provided to the students. Reduirmwledge: matrix multiplication, knowledge of

RGB to CIELAB format.

1. Create a function to multiply two 3 by 3 matrices togetfidiis function will be used to compute the

conversion matrices. See Algorithm .20.

2. Create functions to multiply an array of unsigned chaniadby a conversion matrix of floats producing
floats, to multiply an array of floats by a conversion matriggurcing an array of unsigned characters,
and to multiply an array of floats by a conversion matrix pr@dg an array of floats. These function
will be used to convertto and from RGB, LMS and CIELAB formgisMS is a color space represented
by the response of the three types of cones of the human egesdhafter their sensitivity at long,
medium and short wavelengths. Because RGB is relative eplace (e.g., 255 is full intensity for a
channel, but full intensity is not defined), RGB is convetietiMS before conversion to the CIELAB
format which is a more visually uniform format.) The paraarstare 2D arrays, but they can be left
as flat arrays. To use flat (1D) arrays as 2D arrays, cast tmegpdo be a 2D array. The number of

elements in each row much be constant. See Algorithms .212&nd
3. Create functions to convert to and from RGB and LMS. Se®#tigm .23.
4. Create functions to convert to and from LMS and CIELAB. 8é&gorithm .24,

5. Create RGECIELAB conversion functions that invoke existing conversfunctions. See Algorithm

.25,

6. Create utility functions to read and output PPM images.

124

www.manaraa.com

void matrix_mult_char2float (float matrix[3]1[3],
unsigned char (*in)[3], float (*out)[3], int num_pixels){
int i, j, k;
float result;
for (i=0; i < num_pixels; ++i) {
for (j=0; j < 3; ++j) {
result = 0;
for (k=0; k < 3; ++k)
result += in[i][k] * matrix[k][j];
out[i][j] = result;

}
}
void matrix_mult_float2char (float matrix[3]1[3], float (*in)[3],
unsigned char (*out)[3], int num_pixels){
int i, j, k;
float result;
for (i=0; i < num_pixels; ++i) {
for (j=0; j < 3; ++j) {
result = .5; /* add .5 for rounding */
for (k=0; k < 3; ++k)
result += in[i][k] * matrix[k][j];
if (result > 255) result = 255;
if (result < 0) result = 0;
out[i][j] = result;

Algorithm .21: Character and float conversion

125

www.manharaa.com

void matrix_mult_float2float (float matrix[3][3],
float (*array)[3], int num_pixels){
int i, j, k;
float result;
float *out = (float *) malloc (num_pixels*3* sizeof(float));
for (i=0; i < num_pixels; ++1i) {
for (j=0; j < 3; ++j) {
result = 0;
for (k=0; k < 3; ++k)
result += array[i][k]
out[i*3+j] = result;

*

matrix[k][j];

}
}
for (i=0; i < num_pixels; ++i) {
for (j=0; j < 3; ++j) {
array[i][j] = out [i*3+j];
}
}

free (out);

Algorithm .22: Character and float conversion, continued.

void rgb_to_lms(unsigned char *rgbArray, float *labArray, int num_pixels
){
float matrix [3][3];
float m1 [3][3] = { {0.3897, 0.6890, -.0787},
{-.2298, 1.1834, 0.0464},
{0.0000, 0.0000, 1.0000} };
float m2 [3][3] = { {.5141, .3239, .1604},
{.2651, .6702, .0641},
{.0241, .1228, .8444} };

multiply3by3 (ml, m2, matrix);
matrix_mult_char2float (matrix, (unsigned char (*)[3])rgbArray,
(float (*)[3])1labArray, num_pixels);

}

void 1lms2rgb (float *lab, unsigned char *rgb, int num_pixels) {
float matrix [3][3] = { {4.4679, -3.5873, 0.1193},
{-1.2186, 2.3809, -0.1624},
{0.0497, -0.2439, 1.20453} };
matrix_mult_float2char (matrix, (float (*)[3])1lab,
(unsigned char (*)[3])rgb, num_pixels);

Algorithm .23: RGB to LMS and LMS to RGB

126

www.manaraa.com

void 1lms2lab (float *labArray, int num_pixels) {

float matrix [3][3];
float m1 [3][3] = { {sqrt(3)/3, 0, 0},

{0, sqrt(6)/6, 0},

{0, 0, sqrt(2)/2} };
float m2 [3]1[3] = { {1, 1, 13},

{1, 1, -2},

{1, -1, 0} 1};

multiply3by3 (ml, m2, matrix);
matrix_mult_float2float (matrix, (float (*)[3])labArray, num_pixels);
}

void lab_to_lms (float *labArray, int num_pixels) {
float matrix [3][3];
float m1 [3][3] = { {1, 1, 1},
{1, 1, -1},
{1, -2, 0} };
float m2 [3][3] = { {sqrt(3)/3, 0, 0},
{0, sqrt(6)/6, 0},
{0, 0, sqrt(2)/2} };

multiply3by3 (ml, m2, matrix);
matrix_mult_float2float (matrix, (float (*)[3])labArray, num_pixels);

Algorithm .24: LMS to CIELAB and CIELAB to LMS

void rgb_to_lab(unsigned char *rgbArray, float *labArray, int num_pixels
){
rgb_to_lms (rgbArray, labArray, num_pixels);
Ims21lab (labArray, num_pixels);

}

void lab2rgb(unsigned char *rgbArray, float *labArray, int num_pixels){
lab_to_lms (labArray, num_pixels);
Ims2rgb (labArray, rgbArray, num_pixels);

Algorithm .25: RGB to CIELAB and CIELAB to RGB

127

www.manaraa.com

int getImage (unsigned char **data, int *width, int *height) {
unsigned char c;
int maxVal;
c = fgetc (stdin);

/% toupper converts the character to uppercase */

if (toupper(c) !'= P’ || (c=fgetc(stdin)) != '6’) {
fprintf (stderr, "Incorrect Magic Number\n");
return 0;

}

skip_comments_spaces ();
fscanf (stdin, "%d", width);

skip_comments_spaces ();
fscanf (stdin, "%d", height);

skip_comments_spaces ();

fscanf (stdin, "%d", &maxVal);

fgetc (stdin);

*data = (unsigned char *) malloc ((*width) * (*height) * 3);
fread (*data, (*width) * (*height) * 3, 1, stdin);

return 1;

}

void skip_comments_spaces () {
unsigned char c;
c = fgetc (stdin);

while (c == ’#’ || isspace(c)) {
if (c == "#’) {
while (c != \n’) {

c = fgetc (stdin);
}
}
while (isspace(c)) {
c = fgetc (stdin);
}
}
ungetc (c, stdin);
}
void outputPPM (unsigned char *data, int width, int height) {
fprintf (stdout, "P6\n%d %d\n255\n", width, height);
fwrite (data, width * height * 3, 1, stdout);

Algorithm .26: Image reading utilities

128

www.manharaa.com

int main (O {
int width, height, i;
unsigned char *image;
float * lab;

if (!getImage (&image, &width, &height)) {
fprintf (stderr, "Error reading \n");
return EXIT_FAILURE;

}

lab = (float *) malloc(width*height*3*sizeof(float));

rgb_to_lab (image, lab, width * height);

for (i=0; i < width*height; ++i) {
lab[i*3+1] += 20;

}

lab2rgb (image, lab, width*height);

outputPPM (image, width, height);

return EXIT_SUCCESS;

Algorithm .27: CIELAB conversion main function

7. Create main method to perform conversion, modify thersadmd output. See Algorithm .27.

A.6.13 Phase 10

Phase ten is reading a PPM image file specified on the comnraamdebnverting it to CIELAB
format to modify the colors, and printing it back out. Use oframand-line arguments is necessary for the
final phase, where two images must be specified as input. Redgkmowledge: Command-line arguments,

strings.

1. Update the main function to accept parameters to holddherand-line arguments. The main func-
tion, like all functions may specify parameters in the péneses after its name. The parameters should
be specified by a data type and a name assigned to it. Whenrttigoiuis called, the appropriate type
and number of arguments must be supplied. “Arguments” arathtual values used when calling the

function. “Parameters” are the names for the values usédkitise function.

The first command-line argument (implicitly) passed to th&mfunction is a count of the number
of arguments in the command line. The second argument israg af the strings provided on the
command line, beginning with the name of the program, in dlewing format: . /aout argl arg2

arg3 and so on. These arguments are handled as text or what id caj®ogramming terminology

“strings.” A “C string” is a sequence of characters with awabf zero (called “NULL") marking the

129

www.manaraa.com

int main (int argc, char *argv[]) {

int width, height, i;

unsigned char *image;

float * lab;

FILE *in;

if (argc < 2) {
fprintf (stderr, "Usage: %s filename\n", argv[0]);
return EXIT_FAILURE;

}

in = fopen (argv[1l], "r");

if (!getImage (in, &image, &width, &height)) {
fprintf (stderr, "Error reading \n");
return EXIT_FAILURE;

}

lab = (float *) malloc(width * height * 3 * sizeof(float));

rgb_to_lab (image, lab, width * height);

for (i=0; i < width*height; ++i) {
lab[i*3+1] += 20;

}

lab2rgb (image, lab, width*height);

outputPPM (image, width, height);

return EXIT_SUCCESS;

Algorithm .28: Reading file name from command line

end of the string. The first string passed in is the name oftbewtable program. Inside the program,
this can be found airgv[®] which holds the location of the first character in this strivegne. The

first user-supplied command-line argument is at array lopaine,argv[0]. See Algorithm .28.
2. Update the error message to use the command-line argsiment

3. Open the file passed in on the command line using the “fopenimand. The file should be opened

in read mode using the “r” identifier.

4. Pass the file handle (stream identifier) to the image rgddimctions. See Algorithm .29.

A.6.14 Phase 11

Phase eleven is reading in two PPM image files, converting teeCIELAB format, computing the
means and standard deviations on each file, adjusting tbewaf the first image to the values of the second
based on the paper [60], and printing out the resulting im&gxjuired knowledge: computation of mean,

standard deviation, math functions, and structures.

130

www.manaraa.com

int getImage (FILE *in, unsigned char **data, int *width, int *height) {

}

unsigned char c;
int maxVal;

/* read P6 */

c = fgetc (in);

if (toupper(c) !'= P’ || (c=fgetc(in)) !'= '6’) {
fprintf (stderr, "Incorrect Magic Number\n");
return 0;

}

skip_comments_spaces (in);

fscanf (in, "%d", width);

skip_comments_spaces (in);

fscanf (in, "%d", height);

skip_comments_spaces (in);

fscanf (in, "%d", &maxVal);

fgetc (in);

*data = (unsigned char *) malloc ((*width) * (*height) * 3);
fread (*data, (*width) * (*height) * 3, 1, in);

return 1;

void skip_comments_spaces (FILE *in) {

unsigned char c;
c = fgetc (in);

while (c == ’#’ || isspace(c)) {
if (¢ == "#’) {
while (c != \n’) {

c = fgetc (in);
}
}
while (isspace(c)) {
c = fgetc (in);
}
}

ungetc (c, in);

Algorithm .29: File reading with file handle

131

www.manharaa.com

void logarray (float *fltarray, int num_pixels) {
int i;

for (i=0; i < num_pixels * 3; ++i) {
fltarray[i] = logl® (fltarray[il]);
if (!'finite(fltarray[i])) fltarray[i] = 0;

}
}
void exparray (float *fltarray, int num_pixels) {
int i;
for (i=0; i < num_pixels *3; ++i) {
fltarray[i] = pow (10, fltarray[il]);
}
}

Algorithm .30: Log (base 10) and Power of Ten functions

void rgb_to_lab (unsigned char *rgbArray, float *fltarray, int
num_pixels) {
rgb_to_lms (rgbArray, fltarray, num_pixels);
logarray (fltarray, num_pixels);
Ims2lab (fltarray, num_pixels);
}
void lab2rgb (unsigned char *rgbArray, float *fltarray, int num_pizxels)
{
lab_to_lms (fltarray, num_pixels);
exparray (fltarray, num_pixels);
Ims2rgb (fltarray, rgbArray, num_pixels);

Algorithm .31: Conversion with minimized skewing

1. Create functions to compute and store the logarithms a&pdrentials of arrays of floats. The data
values are scaled logarithmically to minimize skewing, aftdr modification they must be converted

back. See Algorithm .30.
2. Invoke the logarithm and power functions appropriat8ge Algorithm .31.

3. Create a structure to hold all the information about a fileluding its name; its RGB, LMS, and
CIELAB values; its width and height; and its CIELAB means atadndard deviations. A structure
is an aggregate, user-defined type that may hold multiplebiss of multiple types. Since it is a

(user-defined) type, any number of variables of that stredipe may be created. See Algorithm .32.

4. Create functions to compute the means and standard idexsiatf CIELAB L, A, and B values. Mean

132

www.manaraa.com

struct fileinfo {

char *name;

unsigned char *rgb;
float *1ms;

float *lab;

int width, height;
float mean[3], std[3];

Algorithm .32: File information structure

is a simple average. Standard deviation is defined by theWolly formula:

N
(% - %2 (6)

i=1

o=

2~

The standard deviation may be computed with the followimgpst 1) Subtract the mean from each
value. 2) Square the value. 3) Compute the sum of the squédjd3ivide each square sum by the

number of values. 5) Take the square root the value. See iigor33.

. Create a function to scale the L, A, and B values of the ingge from one file to have the same means

and standard deviations as the other. Scaling is done wétfotlowing formula:

X

g
— reference _
X = (X - Xtarget)x— + Xreference (7)

Ttarget

The steps are as follows: 1) subtract the average value itathet image from each pixel’s value. 2)
multiply each value by the standard deviation for the rafeeeimage over the standard deviation for

the target image. 3) add the average value from the refeiarage to each value. See Algorithm .34.

. Update the main function to read in two files using the naamethe command line, convert them to
CIELAB, compute the means and standard deviations, scaléatiget image, and output the result.

See Algorithm .35.

133

www.manaraa.com

void lab_mean (struct fileinfo *image) {
int i, j, k;
for (k=0; k < 3; ++k) {
image->mean[k] = 0;
}
for (i=0; i < image->height; ++i) {
for (j=0; j < image->width; ++j) {
for (k=0; k < 3; ++k) {
image->mean[k]+= image->lab[i*image->width*3+j*3+k];
}
}
}
for (k=0; k < 3; ++k) {
image->mean[k] /= image->width * image->height;

}
}
void lab_stddev (struct fileinfo *image) {
int i, j;
float sq_sum[3] = {0,0,0};
for (i=0; i < image->height * image->width; i++) {
for (j=0; j < 3; j++) {
sq_sum[j] += (image->lab[i*3+j]-image->mean[j])
(image->lab[i*3+j]-image->mean[j]);
}
}
for (j=0; j < 3; j++) {
sq_sum[j] /= image->height * image->width;
image->std[j] = sqrt (sq_sum[j]);
}
}

Algorithm .33: Mean and standard deviation

void scale (struct fileinfo *target, const struct fileinfo *reference) {
int i, k;

/* for 2D referencing of the array */
float (*twoD)[3] = (float (*)[3])target->lab;
for (i=0; i < target->height * target->width; i++) {
for (k=0; k < 3; k++) {
twoD[i][k] -= target->mean[k];
twoD[i][k] *= reference->std[k]/target->std[k];
twoD[i][k] += reference->mean[k];

Algorithm .34: Image scaling

134

www.manaraa.com

#define SCENE 0
#define REFERENCE 1

int main (int argc, char **argv) {
struct fileinfo files[2];
int i;
if (argc < 3) {
fprintf (stderr, "Usage: %s target reference\n", argv[0]);
return EXIT_FAILURE;
}
for (i=SCENE; i <= REFERENCE; ++i) {
files[i].name = argv[i+1];
if (!'getImage (&files[i])) {
fprintf (stderr, "Error reading %s \n", files[i].name);
return EXIT_FAILURE;
}

files[i].lab = (float *) malloc(files[i].width *
files[i].height * 3 * sizeof(float));
rgb_to_lab (files[i].rgb, files[i].lab, files[i].width *
files[i].height);

lab_mean (&files[i]);
lab_stddev (&files[i]);
}
scale (&files[SCENE], &files[REFERENCE]);

lab2rgb (files[SCENE].rgb, files[SCENE].1lab,
files[SCENE].width * files[SCENE].height);

outputPPM (&files[SCENE], stdout);
free_struct (&files[SCENE]);
free_struct (&files[REFERENCE]);

return EXIT_SUCCESS;

Algorithm .35: Color transfer main function

135

www.manharaa.com

Appendix B CS2 Guide

B.1

B.2

Credits

4 (3 hour lecture and 2 hour lab)

Prerequisites

Students taking this course should have had one semesteqialent) of programming and are

expected to have experience with the following:

B.3

Basic C programming

Programming logic (loops and branches)

Functions and parameter passing

Pointers

Built-in data structures (integers, characters, striags, floats)
User-defined data structures (structures, enumeratesd, tiypedef)
Dynamic memory allocation

Command-line arguments

File inpufoutput (opening, reading, and writing)

Course Goals
This course teaches the following computer science skiistachniques:
Standard programming techniques including recursion.

Elementary data structures: arrays, linked lists, staakg,queues, as well as a basic understanding of

the complexity of these structures.
Large program organization and modularization.

Function pointers and unions to approximate object-ogi@cbde.

136

www.manaraa.com

¢ Object-oriented programming and design.

e Incorporation of mathematics into programming.

B.4 Course Description

Each course is structured around a large, semester-lomghigal project. CS2 is structured around
writing a raytracer: a technique for rendering realisti@gas by modeling the path from a given starting
point to defined objects on a scene. An image can be raytracbeédinning each ray at a given starting
point (eye point) and shooting the rays in the direction ahegixel, computing the color resulting from any
intersections, and print the resulting color.

To do something as large as the raytracer, programmers et kb up into smaller phases. This
raytracer can be broken down into as many as 15 phases, wdridfnen be grouped into assignments as the
instructor wishes. In the following lesson guide are dgdimms of each phase, including examples solutions
for the instructor’'s sake. These solutions are j@-€+ and are merely for guidance and not meant to imply

that there are not other, better ways to raytrace.

B.5 Resources

The classic reference on raytracing is Glassn&ridntroduction to Ray Tracin¢1989. Academic

Press Ltd.).

B.6 Lesson Guide
B.6.1 Suggested Course Policies
1. Requirement for on time work.
2. Extra credit for early work.
3. Maximum grade for simply meeting guidelines be lower th80%.
4. Allowance of problem discussion and minor debugging witer students.

5. Prohibition of code sharing, whether verbally or elegically.

137

www.manaraa.com

void raytrace (unsigned char *image, int width, int height) {
int i;
for (i=0; i < width*height; ++i) {
image[i*CHANNELS+0]1=255; /*CHANNELS=3 for red,green,blue®*/
image[i*CHANNELS+1]=0; /% 255,0,0 produces red */
image[i*CHANNELS+2]=0;

Algorithm .36: Stub raytrace method to fill the image data array with redlpixe

B.6.2 Selling the Assignment

This is an important opportunity for the instructor to sélidents on the idea of investing time into
an assignment with exciting results. Selling the assigrimméght include the display of images the students

will be able to create, description of the technique, andamgtion of the impact of this technique in industry.

B.6.3 Phase 1l

The suggested first phase is the creation of a solid-coldPdd f8rmat image file output to standard
out. Although it is not yet raytracing, the program can &télgiven a structure compatible with later raytrac-
ing. Requires knowledge: arrays, array access, data {bytestions, data and ASCII output, PPM image

format, and 10 redirection.

1. Create araytrace function that fills the providednsigned char array with the appropriate number
of pixels (RGB values) needed. Each channel of each pixetpsesented by a byte in the range
of [0,255], which is the size and range of unsigned charactaaking them the best representation
choice. As a note, this method is of course not raytracingigstead, it is more of a “stub” method,

providing valid output to test before the next step. e.g.odithm .36.

2. Create amutput method to create the PPM format image file using the flat pisralyagenerated by
raytrace. PPM formatrequires the first information in the header tthee¢magic number” indicating
the file type; in this caseP6. After the magic number is the specification of the integem@senting
width of the image, the height, and finally the maximum valoleflach channel (red, green, and blue)
of each pixel in the image. (Each channel will be represebjedne byte with maximum values of 0
255.) Each piece of information can be separated by any anoéwhitespace and comment lines. (A

comment is a line beginning with#) After the magic number, dimensions, and maximum value is a

138

www.manaraa.com

void output (unsigned char *image, int width, int height) {
printf ("P6\n%d %d\n255\n", width, height);
fwurite (image, width*height*CHANNELS, 1, stdout);

Algorithm .37: Function for printing a PPM format image to standard out

int main) {
unsigned char image[WIDTH*HEIGHT*CHANNELS];
raytrace (image, WIDTH, HEIGHT);
output(image, WIDTH, HEIGHT);
return EXIT_SUCCESS;

Algorithm .38: Main function for invoking the appropriate functions to druae an image file

single (1) whitespace character. (Caution: some systemsawscharacters to represent end of line.)

Finally, output the entire array of pixels. e.g. Algorith&7.

3. Finally, create a main method to create the unsigned ctear af the appropriate size, call raytrace, and
call output. WIDTH and HEIGHT can be any typical image siagtsas 800 by 600. e.g. Algorithm
.38.

B.6.4 Phase 2

The second phase is a creating an image of any specified sz@irBd knowledge: command-line

arguments, dynamic memory allocation, and string (chariteger conversion.

1. Accept command-line arguments in the main. See Algorifin
2. Create amnsigned char pointer to hold the address of the image data.

3. Use the first two command-line arguments as the width aighhef the image, if they are provided.
The arguments are character arrays and must be convertetggeiis using thetoi function (Ascii

TO Int). If no arguments are provided, use a default width lagidht.

4. Dynamically allocate an array to hold the data for the imyagsed on the specified size. Galytrace
andoutput as before using the image data. Note that in this case fréleingnemory is unnecessary

but is included for completeness.

139

www.manaraa.com

int main (int argc, char *argv[]) {
unsigned char *image;
int width=WIDTH, height=HEIGHT;
if (argc > 2) {
width = atoi(Cargv[1l]);
height = atoi(argv[2]);
}
image = (unsigned char *)malloc (sizeof (unsigned char)
width * height * CHANNELS);
raytrace (image, width, height);
output (image, width, height);
free (image);
return EXIT_SUCCESS;

Algorithm .39: Main function with parameters for accepting command-lirgrianents

B.6.5 Phase3

Phase three is creating an image of any size of a sky. Althdugta basic step, this phase intro-
duces the fundamental structure of the raytracer. Reqkined/ledge: header files, forward declarations,
structures, enumerated types, function pointers, scahiregedural texturing, and pixel location to 3D coor-

dinate conversion.

1. Create 3D “virtual world” dimensions. The output imagelw# raytracer is 2D, but the objects traced
in the image are defined in a 3D world space to create corfémitse. Therefore the locations and
dimensions of objects in the raytracer should be defined asa@dinates to be later projected onto
the 2D image. The sample output images will reflect the commonitor viewing ratio of 4.3 (e.g.
1024,768); therefore, the 3D world coordinates also have3aratio. In the example code, the
component width of the image will be 4 in the range of [-2,2§e¥ component height will be 3 in the
range of [-1.5,1.5]. The component will be zero at the screen with positive and negatilues oz
behind or ahead of the screen. The dimensions can be stogtobad or local constants, or as part of

a scene structure for storing scene information. See Algori40.

2. Create @oint structure to store floating poimty, z coordinates in the 3D virtual world. They may be
stored in an array or as named variables, or (usingian) both. Array storage opens the possibility
for iteration. On the other hand, named variables tend tcalseeeto read. The example code uses an

array with an enumerated type to improve readability.

140

www.manaraa.com

struct scene {

};

int width; /* will be set to 4 */
int height; /* will be set to 3 */

enum coord {X, Y, Z};
struct point {

};

double coords[3];

struct point eye = {{0.0, 1.5, 4.0}}; /¥ high and well back. */

enum channel {RED, GREEN, BLUE};
struct color {

};

double channels[3];

Algorithm .40: Declaration of the scene structure

3. Create an “eye” point to be the starting point of all thesrttybe traced. Each ray shot to create the
image is defined by a starting point and a direction point.hfg stage of raytracing, all rays will start
at the eye point, which should be place in a position a litdekofrom the screen and high enough to

see everything.

Raytracers can use either the “left-handed” or the “rigdntdied” coordinate system. If you are using
the right-handed coordinate system, point your right infiteger toward positivex (likely the right side
of the screen). Keeping the right index finger toward positiyooint the right middle toward positiye
(up). The right thumb is now pointing to positiz¢toward your chest). Under the left-handed system,

your thumb will point away from you (toward the screen). SepiFe 24

Either system may be used and may be switched for each serweptevent code reuse among stu-
dents. If you are using the right-handed system, the eye pboruld have a positivevalue, and the

objects should have negatiz@alues.

4. Create a function to compute a direction point for eaclelpiEach pixel traced will have aftierent
direction point to aim for, based on its location in the imagbe directions are based on pixel image
coordinates. For example, in an image with dimensions oft80600, each pixel has a row value in
the range [0,599] and a column value in the range [0,799].hEpé@cel’s row and column values are

converted tak, y, zcoordinates. Thevalue is always going to be zero, so only thandy values must

141

www.manaraa.com

+Y +7

’ +X

+Z

1
1
1
/ 1
1
1
1

Left-handed Coordinate System Right-handed Coordinate System

Figure 24: Demonstration of the left-handed and right-handed coatdirystems

be computed. Convert the column value toxaralue requires scaling by the width. e.g.

column

widthsceneX width—1

(8)

This scaling should produce a value in the rangeifthscend. However, the value needs to be in the

range [W%seene Widlheone] Thys computing the value requires the scaling and subsequent shift to the

appropriate the range using subtraction. Compuirgsimilar, buty values start positive and work

down to negative, so the subtraction is reversed. e.g.

column widthscen%/: heightcene row

X = W|dthscenex W|dth_ 1 - 2 2 - he'ghgcenex mz = O

)

. Create aolor structure to store the color values generated for a pixehbyraytracer. During ray-
tracing, color values will be scaled and added to, makind@#55] range a little hard to work with.
Instead, each channel of each color will be stored as a flpatant value in the range [0.0, 1.0] and
be scaled after raytracing is complete into the byte [0, 28Bfie. The sample color structure uses the

same format as the point structure.

. Create asky structure to store information needed to calculate theroatue of the sky at a given
point. The color of the sky will never be contingent on théatigg, so the color of the sky is considered

the “ambient” color.

The sample method of creating a sky is using “proceduraltend.” That is, the sky’s color is gener-

142

www.manaraa.com

/* forward declaration of the sky’s ambient computation function */
struct color sky_ambient (struct point spot);

struct sky {
float blue; /% blue contribution */
float base; /* minimum red, green contribution */
float horizon; /* variable red, green contribution */

};

struct scene {
int width; /* will be set to 4 */
int height; /* will be set to 3 */
struct sky sky;

};

struct color sky_ambient(const struct sky *sky,
const struct point *spot){
struct color color;
color.channels[RED] =(l-spot->coords[Y])*sky->horizon+sky->base;
color.channels[GREEN]=(1-spot->coords[Y]) *sky->horizon+sky->base;
color.channels[BLUE] =sky->blue;
return color;

3

struct sky {
float blue, base, horizon;
struct color(*ambient) (const struct sky*, const struct point*);

};

Algorithm .41: Declaration of the sky structure

ated “on the fly” by a function. A blue sky my be textured usingpastant blue contribution with the

red and green contribution varying based on the height ofklge The higher areas of the sky will be
more blue with the lower areas more white. The actual valged €or blue contribution, base red and
green contribution, and varying contribution will be stbi@ a sky structure and are something the
students will want to decide. Some students may prefer te béver predominant colors in the sky,

such as gray. The values relating to the sky should be storedea structure. See Algorithm .41
7. Addsky to thescene structure.

8. Create a function to perform the sky's ambient color comaon. The sky's ambient value is depen-
dent on they value at the ray’s intersection point with the sky. Howeserce intersection with the sky

is impossible, instead the normalized ray from the stanioigt to the direction will be used. Unfortu-

143

www.manaraa.com

struct scene set_scene () {
/* 4 is the virtual-world width.
* 3 is the virtual-world height.
* 1.0 is sky’s blue contribution.
.5 is the sky’s base red, green contribution.
.4 is the sky’s varying red, green contribution.
* sky_ambient is a function pointer to the ambient function.
:':/
struct scene scene = {4, 3, {1.0, .5, .4, sky_ambient}};
return scene;

*

Algorithm .42: Scene set up function

nately, normalization requires many added steps; temipgnaerely the direction point may be used.
A sky will still be produced, giving students interestingout, and the later addition of normalization
to produce a better sky. Thevalue will be subtracted from 1, because 1 is the maximum abtzed

yvalue.

9. Add a function pointer to theky structure to thesky_ambient function. Storing a pointer in the sky
structure to its function will allow to later approximatiofiobject orientation and prepare students for

objectin Cr+.

10. Create a function to set up the scene to trace. The samggegpn’s virtual world width and height are
4 and 3, respectively. The sky’s blue contribution is as maghossible, i.e..Q. Red and green have a
starting contribution of5. Red, green values in the sky closer to the horizon will fedaéed on up to
4. Finally, thesky structure holds a function pointer to its ambient functiem. sky _ambient. e.g.

Algorithm .42.
11. Complete the function for converting pixels into 3D wat-world coordinate. e.g. Algorithm .43.

12. Create a function to trace an individual pixel, usingdRisting starting point (eye) and computing the
direction point. Currently, the only object to trace is thg,svhich is always visible from any direction
(unless itis blocked by another object). Therefore,tthace pixel merely needs to call the ambient
function associated with theky variable. At this point the eye point is not being used buwiit be
when later with direction ray normalization. Most of the giaueters in the example code are pointers
merely to improve runtimef@ciency. For readability, “in” parameters are always maredonst.

See Algorithm .44. Notice that, althoughbient is a function pointer, it is not being de-referenced.

144

www.manaraa.com

struct point virtual_coord (int row, int col, int height,
int width, const struct scene *scene)({

struct point point;

point.coords[X] = scene->width * (col/((double) (width-1))) -
scene->width/2.0;
scene->height/2.0 -
scene->height * row/((double) Cheight-1));
0;

point.coords[Y]

point.coords[Z]
return point;

Algorithm .43: Conversion from pixel coordinates to world coordinates

struct color trace_pixel(const struct point *eye,
const struct point *dir,

const struct scene *scene) {
return scene->sky.ambient (&scene->sky, spot);

Algorithm .44: Function to compute a specified pixel’s values

Depending on the version of C, the function pointers may neé@ dereferenced. e.g. Algorithm .45.

13. Create a method to convert the generated color’s chatontile [0,255] range. Values should be scaled

by 255 and then capped to the range, in case of minor overflgwAdgorithm .46.

14. Finally, update theaytrace to reflect the changes to the raytracer. e.g. Algorithm .47.

The resulting image should look similar to the Figure 25.

B.6.6 Phase 4

The forth phase is creating an image of any specified size avitky and any number of spheres.
Required knowledge: unions, definition of a sphere, rayespmtersection, the quadratic equation, macros,

the dot product, point subtraction, comparing doubles to.ze

1. Create a sphere structure to hold the necessary dataafingra sphere. A sphere is defined by a

return (*scene->sky.ambient) (&scene->sky, spot);

Algorithm .45: Dereferencing of function pointer

145

www.manaraa.com

void to_byte_range (struct color *color) {

enum channel 1i;

int channel;

for (i=RED; i <= BLUE; ++i) {
channel = (int) (color->channels[i] * 255 + 0.5);
if (channel > 255) channel = 255;
if (channel < ®) channel = 0;
color->channels[i] = channel;

Algorithm .46: Conversion of the pixel's channel values to the [0,255] eang

void raytrace (unsigned char *image, int width, int height) {
int i, j, k;
struct point eye = {{0®, 1.5, 4.0}};
struct point dir;
struct color color;
struct scene scene = set_scene ();

for (i=0; i < height; ++i) {
for (j=0; j < width; ++j) {
dir = virtual_coord (i, j, height, width, &scene);
color = trace_pixel (&eye, &dir, &scene);
to_byte_range (&color);
for (k=RED; k <=BLUE; ++k) {
image[(i*width +j)*CHANNELS + k] = color.channels[k];
}

Algorithm .47: Complete program for creating a gradient sky pattern

146

www.manaraa.com

Figure 25: Gradient sky

location §, y, zcoordinate), a radius size (floating point), and an ambielardunction. Additionally,
unlike the sky, the sphere will be intersected by only somimefrays shot. Thus the sphere will need

an intersection test function.

2. Create thesphere_ambient function to return the ambient color at a given point on thieesp. For
now, the spheres will have solid color. An attribute in thbese structure will store the color of the

sphere, or the color can be hard coded into the ambient imcEee Algorithm .48.

3. Create a structure for holding any type of object. Withdbene now containing any number of objects
in the scene, these objects must be stored in a way that aierasion. Since variables of fierent
types(e.g. sky and sphere) may not be in one array, a gestejéet type must be made to hold either
sky or sphere objects. Use of a union provides space forretls&y or a sphere, but not both. The
ambient and intersection functions can be removed fromkii@sd sphere structures and put in the

object structure. See Algorithm .49.
4. Update the sphere and sky ambient function to be compatiith the new structure: Algorithm .50.

5. Update the scene structure to hold the address of thetstgemy. Once definition of the sphere

147

www.manharaa.com

struct sphere {
float radius;
struct point center;

struct color color; /* representation of this object’s color */
struct color (*ambient) (const struct sphere*, const struct point¥*);

int (*intersection) ();

b
struct color sphere_ambient(const struct sphere* sphere,

const struct point* spot) {
return sphere->color;

Algorithm .48: Addition of sphere’s color function

struct sky {
float blue, base, horizon;
};
struct sphere {
float radius;
struct point center;
struct color color;
};
struct object {
struct color (*ambient) (const struct obj*, const struct
int (*intersection) ();
union geometry {
struct sky sky;
struct sphere sphere;
} type;
};

pt*);

Algorithm .49: Consolidation of shared attributes in the object structure

148

www.manaraa.com

struct color sphere_ambient (const struct object* obj,
const struct point* spot){
return obj->type.sphere.color;

}

struct color sky_ambient (const struct object *obj,
const struct point *spot) {
struct color color;
color.channels[RED] = (l-spot->coords[Y])
obj->type.sky.horizon + obj->type.sky.base;
color.channels[GREEN] = (l-spot->coords[Y])
obj->type.sky.horizon + obj->type.sky.base;
color.channels[BLUE] = obj->type.sky.blue;
return color;

}

struct scene {
int width, height;
int num_objs; /* number of objects in the array */
struct object *objects;

3

Algorithm .50: Modification of color functions to match new object struetur

functions is complete, the objects may be added to the scangly.
6. Create the ray-sphere intersection test formula. A ragimed as the set of all poingsalong the line
defined bystartingpointx (1 —t) + directionpointx t.

{plsp(1-t) +dpxt} (20)

t is a sort of ratio of the distance along the rayt I§ 1, the point is at the direction point. tifis O,
the point is at the start point.is not a true distance value, but useful for distance corsparand for
determining whether a ray intersects an object. The distlormula may be used when exact distances

are needed.

Along with the definition of a ray, the definition of a sphereshbe used to determine intersection. If

cis the center point of the sphere anid the radius, a sphere is defined as

{pl(px — &% + (By — &)° + (P2 — &)° = 1%} (11)

149

www.manaraa.com

A ray intersects a sphere when both formulas are satisfieds, tug the ray formula into the sphere

formula. i.e.

((spl—-t) +dput) — C)? + ((sp(L-t) +dpyt) — ¢,)? + (SRl - t) + dpt) = c,)* =12 (12)

To calculate thé value, put the above equation in the the fam + bx+ ¢ = 0, wherex = t and solve

for t using the quadratic equation. i.e.

((dpx— spt + spc— c)% + ((dpy — sp)t + sp, — ¢,)? + ((dp, - sp)t +sp. - ¢,)* - r? =0 (13)

(dpx— spJ*t® + (dpy - Sp)*t* + (dp, — sp)*t°
+2(dpc — SPJ(Spc— Ct + 2(dp, — SP)(SP — &)t + 2(dp; — SP)(SP; —)t (14)
+H(SPc— €)% + (S — ¢))° + (S~ C)* ~r* =0

((dpx — sp)? + (dpy — sp)? + (dp; — Sp)I)t?
+2t((dpx — SPY(SPx — C) + (dpy — SR)(SP — &) + (dp; — SR)(SP: — C2)) (15)
+(SP— C)% + (Sp — ¢))2 + (S~ C)? — 12 =0

a= (dp«—sp)®+(dp, - sp)®+(dp; - sp)?
b="2((dp«— spJ(spc— Cx) + (AP, — SRI(SP, — &) + (dP; — SP)(SP: — C2)) (16)
C= (SPc— G X (SBy - G)2 X (S, — G)2 — 12

Now use the quadratic equation to solve tior

—b+ Vb2 -4ac
N an

This equation could generate two valued.oThese two values represent the two points at which the

ray interests the sphere. If the ray is tangent to the sptiexes will be only one unique value tf

If both values ot are positive, the ray intersects the sphere in two placeschbithe ray (see Figure
26, and the closer point is the one to use. If biothlues are negative, the sphere is behind the ray, and
thus is not visible to this ray. If only onevalue is negative, the ray was shot from inside the sphere.

In this case, the positievalue is the only usable one. Thus the ray-sphere intesseistbased on the

150

www.manaraa.com

no intersection

Figure 26: Ray-sphere intersection

#define SQUARE (x) ((x)*(x))

Algorithm .51: Square macro

closer positive value generated by the quadratic equation.

In some cases, novalue may exist. 1b? — 4acis negativet cannot be computed, because? — 4ac
would be imaginary. This case occurs if the ray never intassthe sphereb? — 4ac is called the

discriminant and determines if an intersection occurslat al

7. Create mathematical utility functions to aid in the writiof the ray-sphere intersection function:
square, point subtraction, and dot product. These funstiag well as other small utility functions

throughout this project (e.g. bounce, normalize, multiptg.) can be integrated as lab assignments.

The square function is needed throughout the intersecéisnand is very simple to write as a C
macro. Be sure to use enough parentheses to prevent incasetts in cases involving expressions
like SQUARE (x-y). See Algorithm .51. Point subtraction is merely a compomgntomponent sub-
traction: Algorithm .52. Finally, the dot product of two \tecs (or points) is the sum of the product of
each component of the two vectogsl - p2 = plxp2y + plyp2y + p1,p2,. The dot product is useful in
determining the cosine of the angle between two vectorgussX - Y = |X||Y|co9. If vectorsX and

Y are normalized, the dot product resultco). In this phase, although no cosines of angles need to
be computed, the dot product is handy for computing the gaolea, b, andc in sphere intersection.

All three computations require multiplication and summatihe components.

151

www.manaraa.com

struct point subtract (const struct point *pl, const struct point *p2) {

struct point sum;
enum coord i; /* an integer counter will also suffice */
for (i=X; i <= Z; ++i) {
sum.coords[i] = pl->coords[i] - p2->coords[i];
}
return sum;

}

double dot_prod (const struct point *pl, const struct point *p2) {

double result=0.0;
enum coord i;
for (i=X; i <= Z; ++i) {
result += pl->coords[i] * p2->coords[i];
}

return result;

Algorithm .52: Point subtraction function

struct intersection {
double t;
struct point location;
struct object *obj;

b

Algorithm .53: Intersection structure

8. Create an intersection structure to be used with the pagse intersection function. Intersection may

be computed using the sphere’s center and radius, thengtadint and direction. The resultingind

intersection point additionally need storage locationss suggested that thtevalue, location, and a

pointer to the object hit (in this case, the sphere passedéyll stored in onéntersection structure

to minimize overhead. See Algorithm .53.

9. Write the ray-sphere intersection function. The funttocepts a sphere object to test for intersection,

a ray starting point, and direction point. The function wéturn a boolean value indicating whether an

intersection occurred, as well as an intersection stractariable (via pointer). Note that tkeruct

object * parameter will not be altered, but it cannot be declaredtesand have its address stored

in the intersection struct variable. See Algorithm .54. Nbwa, b, andc values may be computed for

use in the quadratic equation. Their computation will bepdified with the use of the utility functions.

The computed, b, andc values are now used in the quadratic equation. First, it inestetermined

152

www.manaraa.com

int sphere_intersect (struct object *obj, const struct point *sp,
const struct point *dp, struct intersection *intersect) {
enum coord i; /* used in the for loop */
double t;
struct point dp_minus_sp = subtract (dp, sp);
struct point sp_minus_c subtract (sp, &obj->type.sphere.center);

double a = dot_prod (&dp_minus_sp, &dp_minus_sp);
double b = 2.0 * dot_prod (&dp_minus_sp, &sp_minus_c);
double ¢ = dot_prod (&sp_minus_c, &sp_minus_c) -

SQUARE (obj->type.sphere.radius);

double discr = b*b - 4.0 * a * c;
if (discr >= 0) {
t = (-b - sqrt(discr))/(2.0%a);
if (t < MIN) {
t = (-b + sqrt (discr))/(2.0%a);
}
if (t > MIN) { /* if t is positive, there is an intersection */
for (i=X; i <= Z; ++i) {
intersect->location.coords[i] = sp->coords[i]*(1-1t)
+ dp->coords[i]*t;

}
intersect->t = t;
intersect->obj = obj;
return 1;
}
}
return 0;

Algorithm .54: Sphere intersection function

153

www.manharaa.com

/z":
#de

/:’:

int

in the header */
fine MAX 60

in the main code */
sky_intersect (struct object *obj, const struct point *sp,
const struct point *dp, struct intersection *intersect) {
intersect->location = *dp;
intersect->t = MAX;
intersect->o0bj = obj;
return 1;

Algorithm .55: Sky intersection function

10.

11.

12

whether the determinant. If it is not, the ray never intetséue sphere. Next is the computation of the
firstt value. Ift too small to be significant, the othewalue should be computed and used. Because
floating point values are not infinitely precise/alue cannot simply be compared to zero. Itis possible
for the error in a floating point number to give a false positilnstead{ should be compared to some

minimum value to allow room for error. A suggested value fdiNNs .000001.

If the ray intersects the sphere, thealue can be used to calculate the intersection pairyt ¢ coordi-

nates). e.glocation= sp(1-t) + dpxt.

Finally, if t was not greater than zero, there was no intersection, amtietién should return false.

Create a ray-sky intersection function that alwaysnsttrue. From this point on, all objects raytraced
will need to have ambient functions and intersection fiori If sky has an intersection function, ob-
ject intersections will be simplified by the parallelism.riéach object in the scene, will will check for
intersection and choose the closest object. Sky will alvisymtersected, but at the furthest distance:
MAX. MAX is a constant defining the largest distance any ray will traesafe large distance is 60.
There may be larger or smaller distances that work bett@emi#ing on the implementation. Sky’s
intersection point will still be the direction point, bute@normalization is available, sky’s intersection

point should be the normalized ray from the starting poirthtodirection point. See Algorithm .55.

Update the object structure to have the full signatutb@fntersection functions. This is important to
add, because with a full signature, the C compiler can ifleatiy mistakes in calling the functions.

See Algorithm .56.
. Set up the scene. The example scene in Algorithm .57 taspteres and a sky.

154

www.manaraa.com

struct object {
struct color (*ambient) (const struct obj*, const struct pt*);
int (*intersection) (struct object *, const struct point ¥*,
const struct point *, struct intersection *);
union geometry {
struct sky sky;
struct sphere sphere;
} type;
b

Algorithm .56: Signature information added to the intersection functioim{er declaration

13. Updatetrace_pixel to locate the closest object and return its ambient cologoAthm .58. The

raytracer should now create an image with blue sky, a reteciand a cyan circle (Figure 27).

The spheres are very flat, because there is fiog# lighting yet. Additionally, the sphere on the edge

of the scene may appear slightly stretched: Figure 28.

This stretching fect is caused by the projection of the 3D scene onto a 2D infRays traced toward
the edges intersect objects that are outside of the 2D imiagendions. Thus the edges of the image

tend to be stretched. Thigfect can be reduced by moving the eye point further back freniniage.

B.6.7 Phase5

The fifth phase is creating an image of any specified size witkyaany number of spheres, and a

horizontal floor. Required knowledge: Ray-floor intersacti

1. Create afloor structure to store all floor-related infafora The example floor is an infinite, horizontal
plane with a solid color. Therefore, The floor’s definitiomisrely a color and gvalue called “height.”

See Algorithm .59.
2. Add the floor structure to the union in the object strugtasein Algorithm .60.
3. Create &loor_ambient function to return the color of the floor, as in Algorithm .61.

4. Create afloor_intersect function to determine whether a ray intersects the floor. Agerithm
.62. Again, a ray is defined dp|sp(1 — t) + dp x t}. The floor is an infinite plane at a specified

height. Therefore, the floor is defined as the set of all poiritesey values equal the floor’s height.

155

www.manaraa.com

struct scene set_scene () {

struct scene
int i=
.width
.height
.num_objs
.objects =

scene
scene
scene
scene

0;

I}
1w W

/* first object:

scene.

scene

scene

/* second object:

++1;

scene.
scene.

scene

scene

scene

.objects[i]
scene.
scene.
scene.
scene.
.objects[i]
scene.
scene.

.objects[i]
scene.
.objects[i]
scene.
scene.
.objects[i].
scene.

objects[i]
objects[i]
objects[i]
objects[i]
objects[i]

objects[i]
objects[i]

objects[i]
objects[i]

objects[i]

objects[i]
objects[i]

objects[i].

/* third object:

++1

scene
scene
scene
scene

.objects[i].
.objects[i].
.objects[i].
.objects[i].
scene.

objects[i].

return scene;

scene;

3;

a dark red sphere on the lower
sphere.
sphere.
sphere.
.radius
color.channels[RED]=139
color.channels[GREEN] =
color.channels[BLUE]
.ambient = sphere_ambient;
.intersection = sphere_intersect;

.type.
.type.
. type.
. type.
.type.
.type.
.type.

sphere

sphere.
sphere.
sphere.

center
center
center

(struct object *) malloc
(sizeof (struct object)

o

coords [X]
coords[Y]
coords[Z]
= .75;

a cyan sphere on the left

.type.
.type.
.type.
.type.
.type.
.type.

.type.
ambient =

sphere.
sphere.
sphere.
.radius
color.channels[RED]
color.channels[GREEN]
color.channels[BLUE]
sphere_ambient;

sphere

sphere.
sphere.
sphere.

center.
center.
.coords[Z]

center

coords [X]
coords[Y]

= .75;

scene.

num_objs);

right */
1.4;
-1.25;
-1.5;

0.0;
0.0;

-1.
-0.25;
-2.25;

1l
=

intersection = sphere_intersect;

a blue sky */

type.sky.blue
type.sky.base =

type.sky.horizon =

ambient =

1.0;

.4;

sky_ambient;
intersection = sky_intersect;

Algorithm .57: Specification of the objects in the scene

.0/255.0;

156

www.manaraa.com

struct color trace_pixel (const struct point *eye,
const struct point *dir,
const struct scene *scene) {
int i;
struct intersection curr, closest;
closest.t = MAX+1;

/* find the closest intersected object (i.e. the intersected
object with the smallest t value. */
for (i=0; i < scene->num_objs; ++i) {
if (scene->objects[i].intersection (&scene->objects[i],
eye, dir, &curr) && curr.t < closest.t) {
closest = curr;
}
}

return closest.obj->ambient (closest.obj, &closest.location);

Algorithm .58: Addition of nearest object search

Figure 27: Blue sky and filled circles

157

www.manharaa.com

2D image plane~y,
eye
rays cast \

Figure 28: Ray scene projection

struct floor {
int height;
struct color color;

};

Algorithm .59: Specification of the floor structure

struct object {
struct color (*ambient) (const struct obj*, const struct pt¥)
int (*intersection) (struct object *, const struct point *,
const struct point *, struct intersection *);
union geometry {
struct sky sky;
struct sphere sphere;
struct floor floor;
} type;
};

Algorithm .60: Addition of floor structure to the geometry union

struct color floor_ambient(const struct object* obj,
const struct point* spot){
return obj->type.floor.color;

Algorithm .61: Floor’s color function

158

www.manaraa.com

int floor_intersect (struct object *obj, const struct point *sp,
const struct point *dp, struct intersection *intersect) {

/* in the floor_intersection function */
if (fabs (dp->coords[Y]-sp->coords[Y]) < MIN) return O;

intersect->t = (obj->type.floor.height - sp->coords[Y])/
(dp->coords[Y] - sp->coords[Y]);
if (intersect->t < MIN) return 0;

intersect->0bj = obj;

intersect->location.coords[X] = sp->coords[X]
(1.0-intersect->t) + dp->coords[X] * intersect->t;

intersect->location.coords[Y] = obj->type.floor.height;

intersect->location.coords[Z] = sp->coords[Z]
(1.0-intersect->t) + dp->coords[Z] * intersect->t;

return 1;

Algorithm .62: Floor intersection function

i.e.{plpy = heigh}. The ray intersects the floor where both equations are satisfi

(sp(1-t)+dpt = height

(18)
(dpy — sp)t + sp, = height
height—s
= 49

If the t value is negative, the intersection with the ray occursteatfoe starting point and is not visible.
if dpy = sp,, the ray is parallel to the floor and will not intersect it. litvalues are the same as the
floor’s height, then technically the ray is traveling insttie floor, and will be ignored. Unfortunately,
determining whethed p, = sp, is difficult, because floating point representation makes it ulylikeat
the two values will ever be identical. Instead of direct camgon, the absolute flierence between the
values should be compared to a minimum value MIN, and if tfiedince is less, the two points will

be treated as equal.

Once ray-floor intersectionis confirmed, the intersectioimpmust be computed. Once agdotation=
sp(1 -t) + dpt They value, however, will always be the height of the floor. Thufyonandz and

must be computed.

5. Add a floor to the scene in tiet_scene function: Algorithm .63. The resulting image will have cyan

159

www.manaraa.com

struct scene set_scene () {

struct scene
int i=
.width
.height
.num_objs

scene
scene
scene

scene.

0;

I w W

objects =

scene;

4;

(struct object)

(struct object *) malloc (sizeof
* scene.num_objs);

/* first object: a beige floor */

scene

scene.
scene.
scene.
scene.
scene.

/* second object:

++1;

/:’:

.objects[i]

objects[i]
objects[i]
objects[i]
objects[i]

.type.floor.
.type.floor.
.type.floor.
.type.floor.

height = -2;
color.channels[RED]
color.channels[GREEN]
color.channels[BLUE]

.ambient = floor_ambient;
intersection = floor_intersect;

objects[i].

:':/

1.0;
235.0/255.0;
205.0/255.0;

a dark red sphere on the lower right */

Algorithm .63: Addition of the floor to the scene

struct floor {

int height;
struct color colorl, color2;
}s
Algorithm .64: Two colors in the floor structure
and dark red circles, a blue sky, and a beige floor: Figure 29.
B.6.8 Phase 6

The six phase creates an image of any specified size with askypyumber of spheres, and a check-

ered floor. The checkered floor will have two alternating colapplied procedurally. Required knowledge:

Mathematical functiorfloor and modular arithmetic.

1. Update thefloor structure to have two colors. See Algorithm .64.

2. Update theset_scene to set both floor colors. See Algorithm .65.

3. Update thefloor_ambient function to create a checkered pattern. The checkerindgpwitiased on the

x andz value of the intersection location. (Tlyevalue will always be the floor height.) Each checker

160

www.manaraa.com

Figure 29: Blue sky, circles, and floor

/* first object:

scene.
scene
scene.
scene
scene.
scene
scene.
scene.
scene.

objects[i].

.objects[i].

objects[i].

.objects[i].

objects[i].

.objects[i].

objects[i].
objects[i].
objects[i].

a checkered floor

type.
type.
type.
type.
type.
type.
type.

floor.
floor.
floor.
floor.
floor.
floor.
floor.

height
colorl
colorl.
colorl.
color?
color2.
color?

7’:/
= —2;

.channels[RED]

channels[GREEN]
channels[BLUE]

.channels[RED]

channels[GREEN]

.channels[BLUE]

ambient = floor_ambient;
intersection = floor_intersect;

Algorithm .65: Specification of the floor colors

1.0;
235.
205.
139.
69.
19.

0/255.
0/255.
0/255.
0/255.
0/255.

[— I — I — I —]

161

www.manaraa.com

-2 -1 0 1 2
L= 2 %)= 2 L= 2 x)= 2
+ 22 |+ 121 |+ 20 | +1z2F1) 4
even odd | even odd
x)= 1 Lx)= 1 %)= 1 L¢J= 1
+z)=2 | +lz=1 |+z2F 0+ 2= 1] x
odd | even odd | even
xJ= 0 x]=0 <=0 [x]=0
+z=2 |+ z2=1 |+l2F 0 |+1z=1 |V
even odd | even odd

€ z

L'

Figure 30: Checker algorithm

will be a square whose width and height are each size 1 in veodddinates. Each color begins at a

round world coordinate value (-2.0, -1.0, 0.0, 1.0, etcd ands at the next integer value.

The color of the floor at a given location will be based on théhamatical floor of thexandz values.
The floor of a numbex (| x]) is the largest integer less than or equattd@ he floor function is used for
bothx andz to generate two integergx| and|z|. At every other square, the sum of these integers is

even. See Figure 30.

Therefore, a simple way to apply the checkered texture piuredly is to apply one color whenever the
sum of|x] and|z] is even and the other when the sum is odd. Of course, even ahdadies can be

determined using modulo 2. See Algorithm .66 and Figure 31.

B.6.9 Phase?7

The seventh phase is the use of an Object-Oriented program @O language to create an image
of any specified size with a sky, any number of spheres, andeekehed floor. Converting to-G+ can
be postponed, but it is not suggested. At this point, stislbave actually implemented Object-Oriented
programs, but have done so with unions and function poin&tes/ing with a procedural programming from
this point on will not add any knowledge, and beginning with@O language will introduce many new
concepts with ample time for practicing programming in a pasadigm. Additionally, an early conversion

to C++ reduces the amount of code that will need to be rewritten+in CCovered knowledge: €+ classes,

162

www.manaraa.com

struct color floor_ambient(const struct object* obj,
const struct point* spot){
int floorX (int) floor (spot->coords[X]);
int floorZ = (int) floor (spot->coords[Z]);

if ((floorX+floorZ)%2==0) {
return obj->type.floor.colorl;
} else {
return obj->type.floor.color2;

}

Algorithm .66: Functional floor texture

Figure 31: Sky, circles, and checkered floor

163

www.manharaa.com

#ifndef POINTCLASS

#define POINTCLASS

// all of the Point header code
#endif

Algorithm .67: If-not-defined preprocessor directive

C++ inheritance, virtual methods, purely virtual methodserehces, static methods, destructors, operator
overloading, anonymous structures, constructor intt#ion, default parameters, constant member functions,
typedef, iostreams, and make files.

Not all covered knowledge needs to be introduced at thisgphd#ore advanced information is

provided for future direction.

1. Design the raytracer. The sample raytracer has manyifunscand variables that should be grouped
appropriately. Most structures will become classes, andtfans that operate on those structures will
become methods of those classes. The structures point, oblect, sky, sphere, floor, and scene

should all become classes, as also may be the raytracer.

2. Create the Point class. The Point class will hglgd z coordinates, methods for initializing, accessing,
and modifying those coordinates, the maximum coordindigevia the raytracer, the minimum coor-
dinate value considered significant, a method for 2D to 3Dvemsion, and point-related operations,

such as subtraction and dot product.

Note that since the Point header will likely be included inltiple files, it may be helpful to surround

the entire header with the notation in Algorithm .67. The poments in the Point class can be named
doubles, an array of doubles or both. Not all-€compilers will allow anonymous structures as shown
in Algorithm .68. If not, name them. Declare the maximum aliste allowed in the scene and the

minimum distance considered significant.

The x, Yy, z values will be initialized in the point class constructorheTconstructor must accept up
to 3 values, but it is fine to have default component valuekéfuser does not wish to specify the
components initially. In Object-Oriented programmingstance variables, such as the coordinates, are
typically private to allow the class to control any access mrodification. Therefore, accessor methods
should be provided to access these components. Since tle#iseds are accessors only and do not alter
the state of the object (i.e. they do not change any instamgables), they should be declared constant

methods. Note that puttingvoid" in the parameters is not necessary. It is C notation for aoiriy

164

www.manaraa.com

// in the header file Point.h
typedef enum {X, Y, Z} coord;

class Point {
private:

union {

struct {

double x, vy, z;

};

double xyz[3];
}s

public:

static const double MAX = 60.0;
static const double MIN = 0.000001;
Point (double x=0.0, double y=0.0, double z=0.0);
double get_x(void) const { return x; }
double get_y(void) const { return y; }
double get_z(void) const { return z; }
double operator[] (int i) const { return xyz[i];}
double &operator[] (int i) { return xyz[i];}
double dot_prod (const Point &pt) const;
Point subtract (const Point &pt) const;
Point operator-(const Point &pt) const;

Algorithm .68: Point class

165

www.manharaa.com

that the method does not have parameters. Another morgiietwiay to access the components is
using bracket notation. e.galue = point[X]; Bracket notation is very natural and can be use for
accessing or modifying values. Thus, the Point class is d gtaze to use operator overloading. There
are two bracket operators the Point class can overload oth&t@nt accessor and the accessatator.
The constant accessor operator is a constant method (aneei by the modifieconst occurring

after the method signature) that returns a copy of the vdltieaspecified location.

The accessg@mutator bracket operator is not constant and returns agmederto the value at the speci-
fied location. References (specified with ampersands (&haw in G-+. They are similar to pointers,
but they require less notation. If a reference is returnechfa method in €+, the compiler determines
whether the value should be used as a reference or as thé\adtie Therefore the bracket operator

can work with both of the following code snippetgint[X] = 5; andvalue = point[X];

Since they operate exclusively on Point objects, dot prodad subtract will be part of the Point

class. These methods will act on the object the method wéesdcapon and the object passed in.
For dficiency, parameters can be passed as references, sin@noeferequire less space than Point
objects. Since these parameters will not be modified, theyldhbe declared constant. As before,

since these methods are not altering the state of the otijegtshould also be declared constant.

The built-in subtraction operator may be overloaded forghint class, instead of naming the sub-
traction method “subtract.” Overloading allows more ititid operationsPoint diff = pointl -
point2; The subtraction operator may be overloaded by merely chgrige method namgperator-.

To comply with the standard definition of the subtractionrapar, the method must return a copy of
the result of the subtraction (a copy, because the reshiporary) and may not alter the state of the
objects involved. Therefore the method should be constarghould be the parameter. The Point result
is returned by copy. The completed implementation of theRdass is shown in Algorithm .69. The
constructor can set they, zvalues through assignments (exg= x_in), or by using initialization, as
shown in the so-called member initialization list in Algrin .69. Initialization is moreféicient than
assignment, because the values of the attributes are sedroece. With assignmenx, y, andz would

be initialized to default values before the assignment oecls An object can access private members

of another object of the same type.

. Create the Color class. The Color class will hold red, gyrbkie values as before. The structure of the

Color class is very similar to the Point class, and therefi@eds little explanation. Again, not alkG

166

www.manaraa.com

#include "Point.h"

Point::Point (double x_in, double y_in, double z_in):
x(x_in), y(y_-in), z(z_in) {}

double Point::dot_prod (const Point &pt) const {
return X * pt.x + Yy * pt.y + Z * pt.z;

}

Point Point::operator- (const Point &pt) const {
return Point (x-pt.x, y-pt.y, z-pt.z);

}

Algorithm .69: Point class implementation

compilers will allow anonymous structures as shown in Algpon .70. The color class should also
handle the conversion from range [0.0, 1.0] to [0.0, 255T0F example method converts “this” object
to [0,255] and returns a reference to this. After class ddimis implementation, begun in Algorithm

71

Theto_byte_range method uses the bracket operator to access the RGB valuebratket operator
must be used on an object of thelor class. The “this” pointer to refer to the object the method is
called on. Sincehis is a pointer, it must first be dereferenced before accessilugs with the bracket

operator.

4. Create the generic Object class to be the base class frach alhthe objects in the scene will inherit.

The Object class uses the intersection structure, as wiidkaBoint class and Color class.

Since no methods need to be associated with intersectitam itemain a structure. This may be a good
time to begin usingypedef, but it is not necessary. See Algorithm .72. Now the Objezsslcan be
defined. Since the Object class will be the base class, itkadstmust be markedirtual to allow
them to be overridden by inheriting classes. Additionaiyyéu wish) the methods can be “purely
virtual,” meaning they must be overridden by a class thatihstsintiateable objects. Otherwise, an
error is generated. To make a method purely virtual, marls itiatual and place=0; after the

signature. See Algorithm .73.

5. Create the Scene class to handle all Scene related intformsuch as the 3D world width and height,
and an array of scene objects. An additional method sugheste“first visible” method that returns
the first intersection by a given ray. This method belongsdern®, because the Scene class actually

contains the objects.

167

www.manaraa.com

// in Color.h
typedef enum {RED, GREEN, BLUE} channel;

class Color {
private:
union {
struct {
double red, green, blue;
};
double rgb[3];
};
public:
Color (double r=0.0, double g=0.0, double b=0.0);
double get_red (void) const { return red; }
double get_green(void) const { return green; }
double get_blue (void) const { return blue; }
double &operator[] (int i) { return rgb[i];}
double operator[] (int i) const { return rgb[i];}
Color &to_byte_range (void);

Algorithm .70: Color class definition

// in Color.cpp
#include "Color.h"
Color::Color (double r, double g, double b): red(r), green(g), blue(b)

{}

Color &Color::to_byte_range (void) {
for (int i=RED; i <= BLUE; ++i) {
(*this)[i] = (*this)[i] * 255 + 0.5;
if ((*this)[i] > 255) (*this)[i] = 255;
if ((*this)[i] < 0) (*this)[i] = 0;
}
// Since "this" is a pointer, it must be dereferenced first
// in order to be converted to a reference.
return *this;

Algorithm .71: Beginning of Color class implementation

168

www.manaraa.com

// in Object.h
#include "Color.h"
#include "Point.h"

// forward declaration to allow intersection to reference Objects.
class Object;

typedef struct {
Object *obj;
double t;
Point spot;

} intersection;

Algorithm .72: Definition of intersection structure

class Object {
public:
virtual Color get_ambient (const Point &spot) const = 0;
virtual bool get_intersect(const Point &sp, const Point &dp,
intersection &intersect) =0;

Algorithm .73: Definition of purely virtual Object methods to be overriddgnchild classes

Any methods or data attributes in Scene that do not dependstanice variables should be declared
static. Only one copy of each static method and attributetesind can be accessed (without an object)
using the class name and scope resolution operatorSeegre : : WIDTH. Since Scene has an array of
objects, it must include the Object header. See Algorithdn The array of Objects will actually hold
Object pointers. Since Object cannot be instantiated Gtphaely virtual methods), it is best to have

the array be pointers to Objects.

The array of Objects will be dynamically allocated and filledh dynamically allocated elements.
Therefore, the Scene class needs a destructor to perfoam gfeafter Scene objects are deleted. A

destructor is responsible for deleting any memory allatatethe object on which it is called.

Once all the allocated memory for all elements in the arraytiegen de-allocated, the array itself must
be de-allocated. Arrays must be deleted using the braclkeatgr to specify to the environmentto free

the entire array.

The first_visible method accepts a starting point and a direction point angiretan intersection

structure holding a pointer to the closest object inteesb@tlosest to starting point), the intersection

169

www.manaraa.com

#include <stdlib.h>

#include "Object.h"

class Scene {

private:

static const int WIDTH = 4;
static const int HEIGHT= 3;
const int NUM_OBJS;
Object **objects;

public:

Scene (void);
“Scene (void) {

for (int i=0; i < NUM_OBJS; ++i) {

delete objects[i];

}

delete [] objects;
}
intersection first_visible (const Point &, const Point &) const;
static Point virtual_coord (int row, int col, int h, int w);

Algorithm .74: Scene class header file

point, and the distandealong the ray from the starting point to the intersectiompoNote: sp+ dp

could be included in the intersection structure.
Thevirtual_coord method is static, because its result does not rely on angrinstvariables.

Completion of the Scene class in theene . cpp file will have to wait until all scene object classes are

defined.

6. Create the Sky class to inherit from the Object class. Kyess must define values for the blue, hori-
zon, and base régkeen values. Additionally, Sky will override Object’s ply virtual get_ambient
andget_intersect methods. The Sky class must include the Object header filedier @0 access the
Object class. See Algorithm .75. The implementation of tke@ass is as would be expected, as seen

in Algorithm .76. Theget_ambient method returns a new Color object by copy.
As usual, intersection with the sky is always possible araliceat the largest possible distance. In the

future, the intersection spot should be the normalizednmaypto dp.

7. Create the Sphere class to inherit from the Object clals. Sphere class defines radius, center, and
color instance variables, a constructor, and overridesittigal Object methods. See Algorithm .77.

The constructor and ambient methods are straightforwaggplhere . cpp, as in Algorithm .78. The

170

www.manaraa.com

// in Sky.h
#include "Object.h"

class Sky : public Object {

private:
double horizon, base, blue;

public:
Sky (double, double, double);
virtual Color get_ambient (const Point&) const;
virtual bool get_intersect(const Point&, const Pointg&,

intersectiond&) ;

Algorithm .75: Definition of the Sky class

// in Sky.cpp
#include "Sky.h"

Sky::Sky (double hor, double ba, double bl)
horizon C(hor), base (ba), blue (bl) {}
Color Sky::get_ambient (const Point &spot) const {
double redgreen = (1-spot[Y])*horizon + base;
return Color(redgreen, redgreen, blue);
}
bool Sky::get_intersect(const Point &sp, const Point &dp,
intersection &intersect) {
intersect.t = Point::MAX;
intersect.spot = dp;
intersect.obj = this;
return true;

Algorithm .76: Sky class code file

171

www.manaraa.com

// in Sphere.h
#include "Object.h"
#include <math.h>

class Sphere : public Object {

private:
double radius;
Point center;
Color color;

public:
Sphere (double, const Point &, const Color &);
virtual Color get_ambient (const Point &spot) const;
virtual bool get_intersect(const Point &sp, const Point &dp,

intersection &intersect);

Algorithm .77: Sphere class definition

intersection method is much neater than the C version, dwpévator overloading and access to

instance variables.
Since the Point class overloads the subtraction operaion gubtraction uses much simpler notation.
Thedot_product function is now a member of the Point class and must be cafiealPoint object.
The Point class’s bracket operator cleans up access to thiecomponents.

8. Create the Floor class to inherit from the Object clas® Hibor class defines height and color attribute
and a constructor, and it overrides the Object’s virtualhods. See Algorithm .79.

The examplegget_ambient method uses the ternary operator, which is available in Cels ee
Algorithm .80. If the condition is true, the expression resuthe first value. If not, the expression

returns the second value.

9. Create the Scene.cpp file to complete the Scene classtidefinin C++, the new operator is used
to dynamically allocate memory. See Algorithm .81. Thierst visible method uses static dec-
larations to define the intersection variables. These bl$ado not need to be static, but declaring
them static ensures that they are created only once at theneg of the program, rather than ev-
ery timefirst_visible is invoked. The are initialized once at the beginning of exien, and then

closest.tis re-set tdlAX+1 every time the method is invoked. See Algorithm .82.

10. Create the Raytracer class to pull it all togethex+@ostreams may be used to output the image. (Of

172

www.manaraa.com

// in Sphere.cpp
#include "Sphere.h"

Sphere: :Sphere (double r, const Point &cen, const Color &col)
radius (r), center (cen), color (col) {}
Color Sphere::get_ambient (const Point &spot) const {
return color;
}
bool Sphere::get_intersect(const Point &sp, const Point &dp,
intersection &intersect) {

double t;
Point dp_minus_sp = dp - sp;
Point sp_minus_c = sp - center;

double a = dp_minus_sp.dot_prod (dp_minus_sp);
double b = 2.0 * dp_minus_sp.dot_prod (sp_minus_c);

double ¢ = sp_minus_c.dot_prod (sp_minus_c) - radius * radius;

double discr = b*b - 4.0 * a * c;

if (discr >= 0) {
t = (-b - sqgrt(discr))/(2.0%a);

if (t < MIN) {
t = (-b + sqrt (discr))/(2.0%a);

}

if (t > MIN) {
for (int i=X; 1 <= Z; ++1i) {

intersect.spot[i] = sp[il*(1-t)+ dp[il*t;

}
intersect.t = t;
intersect.obj =
return true;

this;
}
}

return false;

Algorithm .78: Sphere class

173

www.manharaa.com

#include "Object.h"
#include <math.h>

class Floor : public Object {

private:
double height;
Color colorl, color2;

public:
Floor (double, const Color &, const Color &);
virtual Color get_ambient (const Point &spot) const;
virtual bool get_intersect(const Point &sp, const Point &dp,

intersection &intersect);

Algorithm .79: Floor class definition

#include "Floor.h"

Floor::Floor (double ht, const Color &cl, const Color &c2)
height (ht), colorl(cl), color2(c2) {}

Color Floor::get_ambient (const Point &spot) const {
int floorX = (int) floor (spot[X]);
int floorZ = (int) floor (spot[Z]);
return ((floorX+floorZ)%2==0)? colorl : color2;

}

bool Floor::get_intersect(const Point &sp, const Point &dp,
intersection &intersect) {

if (fabs (dp[Y]-sp[Y]) < Point::MIN) return false;
intersect.t = (height - sp[Y])/(dp[Y] - sp[Y]);
if (intersect.t < Point::MIN) return false;

intersect.spot[X] = sp[X] * (l1.0-intersect.t) + dp[X] * intersect.t;
intersect.spot[Y] = height;

intersect.spot[Z] = sp[Z] * (l1.0-intersect.t) + dp[Z] * intersect.t;
intersect.obj = this;

return true;

Algorithm .80: Floor class implementation

174

www.manaraa.com

#include "Scene.h"
Scene::Scene (void) : NUM_OBJS(4) {
int i=0;
objects = new Object® [NUM_OBJS];
objects[i++] = new Floor (-2, Color (1.0, 235.0/255.0, 205.0/255.0),
Color (139.0/255.0, 69.0/255.0, 19.0/255.0));
objects[i++] = new Sphere (.75, Point (1.4, -1.25, -1.5),
Color (139.0/255.0, 0.0, 0.0));
objects[i++] = new Sphere (.75, Point (-1.5, -.25, -2.25),
Color (0.0, 1.0, 1.0));
objects[i++] = new Sky (.4, .5, 1.0);

Algorithm .81: Initialization of Objects in the Scene

intersection Scene::first_visible (const Point &sp, const Point &dp)
const {
static intersection curr = {NULL, Point::MAX+1, Point()};
static intersection closest (curr);
closest.t = Point::MAX+1;

for(int i=0; i < NUM_OBIJS; ++i) {
if (objects[i]->get_intersect (sp, dp, curr) && curr.t < closest.t
) {
closest = curr;
}
}
return closest;

}

Point Scene::virtual_coord(int row,int col,int img_h,int img_w){
return Point (WIDTH * (col/(double)(img_w-1)) - WIDTH/2.0,
HEIGHT /2.0 - HEIGHT*row/(double) (img_h-1),0.0);

Algorithm .82: Scene class’s first intersected method and coordinate datgrumethod

175

www.manaraa.com

#include <iostream>
#include "Scene.h"
using std::cout;
using std::endl;

class Raytracer {

private:
static const int CHANNELS=3;
static const int DEFAULT_WIDTH=800;
static const int DEFAULT_HEIGHT=600;

int width, height;

Point eye;

Scene scene;

unsigned char *image;

Color trace_pixel (const Point &sp, const Point &dp);

public:
Raytracer (int w=DEFAULT_WIDTH, int h=DEFAULT_HEIGHT);
“Raytracer (void) {
delete []image;
}
void create_image(void);
void trace (void);
void output (void) const;

Algorithm .83: Raytracer class definition

courseprintf andfwrite will still work.) Since cout andendl are part of thestd namespace, their
declarations must be specified with thed name and the scope resolution operator. See Algorithm
.83. Since the raytracer allocates an array of image datagjdbtructor must deallocate the memory

when the raytracer object is deleted.

The Raytracer class constructor will initialize the dimiens of the image, the eye point location, the
scene, and will dynamically allocate memory to store thaltesy image data, as in Algorithm .84. The
given method is not necessary, but it simplifies the creaifoaytraced images. The exampletput
method uses iostreams to output the image. (Of coptsemt £ andfwrite are still available.) There
must be only one character after the 255. For this regsdused instead adnd1. In some operating

systemsendl would produce 2 characterg:\n.

The trace method invokes the staticirtual_coord method. A static method in another class can

176

www.manaraa.com

// in Raytracer.cpp
#include "Raytracer.h"

Raytracer::Raytracer (int w, int h) : width (w), height(h),
eye (0.0, 1.5, 4.0), scene() {
image = new unsigned char [width*height*CHANNELS];

}
void Raytracer::create_image (void) {
trace();
output () ;
}
void Raytracer::output (void) const {
cout <<"P6"<<endl<<width << " " << height << endl << "255\n";
cout.write ((char *)image, width * height * CHANNELS);
}

Color Raytracer::trace_pixel (const Point &sp, const Point &dp) const {
intersection intersect = scene.first_visible (sp, dp);
return intersect.obj->get_ambient (intersect.spot);

Algorithm .84: Raytracer implementation

by called by the class name and use of the scope resolutioatopeSee Algorithm .85.
11. Create a main function to create and run the raytracer.

12. Create a make file to compile all the files together. Of seuthe make file is not required, but it is

very helpful. See Algorithm .86. The image should come oeatsthme as before the conversion.

B.6.10 Phase 8

The eighth phase is an object-oriented program that creati#sage of any specified size with a sky,
any number of spheres, a checkered floor, and shadows. Ttetitat cast the shadows will be child classes

of the Sphere class. Required knowledge: protected atbsbatatic local variables, andftise lighting.

1. Update the Sphere class to allow for inheritance. Sinighais defined as a round object with a radius,
location, and color, Sphere is the perfect base class fitLivery attribute that Light needs to inherit
must be markegrotected, and every method Light needs to override must be virtuad.Agorithm

.87.

2. Create the Light class. Light will inherit from Sphere tuiit always have a white color. (In the future,

colored lights are an option.) Additionally, since light&ions are central to the creation of shadows,

177

www.manaraa.com

void Raytracer::trace (void) {

Point dir;

Color color;

for (int i=0; i < height; ++i) {

for (int j=0; j < width; ++j) {
dir = Scene::virtual_coord (i, j, height, width);
color = trace_pixel (eye, dir);
color.to_byte_range ();
for (int k=RED; k <=BLUE; ++k) {
image[(i*width +j)*CHANNELS + k] = (unsigned char)color[k];

}

}
}
int main (int argc, char *argv[]) {
Raytracer *tracer;
if (argc > 2) {
tracer = new Raytracer (atoiCargv[1l]), atoi(argv[2]));
} else {
tracer = new Raytracer ();
}
tracer->create_image ();
delete tracer;

Algorithm .85: Raytracer main function and trace method

HEADERS = Raytracer.h Color.h Point.h Floor.h Sky.h Scene.h \\
Sphere.h Object.h
OBJS = Raytracer.o Color.o Point.o Floor.o Sky.o Scene.o Sphere.o

Conversion rule: source_extension -> object extension
#
.cpp.o: $(HEADERS) Makefile

g++ -c -Wall $*.cpp

a.out: $(HEADERS) $(OBJIS)
g++ -Wall $(OBIS)

clean:
rm -f *.0 core a.out *.ppm *.gch

Algorithm .86: Makefile

178

www.manaraa.com

class Sphere : public Object {

protected:
double radius;
Point center;
Color color;

public:
Sphere (double, const Point &, const Color &);
virtual Color get_ambient (const Point &spot) const;
virtual bool get_intersect(const Point &sp, const Point &dp,

intersection &intersect);

Algorithm .87: Sphere class definition

// in Light.h
#include "Sphere.h"

class Light : public Sphere {
public:
Light (double, const Point &);
const Point & location () const { return center; }
};

// in Light.cpp

#include "Light.h"

Light::Light (double r, const Point &cen)
Sphere (r, cen, Color (1,1,1)) {}

Algorithm .88: Light class definition

and shadows are calculated, at least initially, by sendigg from intersection points to light centers,

the Light class will provide a method for accessing its ceptént. See Algorithm .88.
3. Create an array of in the Scene class to hold all the lightsd scene. See Algorithm .89.
4. Update the destructor to clean up the lights array as weh@objects array.
5. Add lights to the scene light array. Algorithm .90 addethlights.
6. Updatefirst_visible to iterate through both the objects and the lights arrays.

7. Create a method to determine which lights are visible feogiven point. Casting shadows amounts
to adding extra brightness for each visible light. A lighvisible from a given point if a ray from the

given point toward the center of the light does not intere@gtother objects before reaching the light.

179

www.manaraa.com

// in Scene.h
class Scene {
private:

static const int WIDTH = 4;
static const int HEIGHT= 3;
const int NUM_OBJS;
const int NUM_LIGHTS;
Object **objects;
Light **lights;

“Scene (void) {

for (int i=0; i < NUM_OBIJS; ++i) {
delete objects[i];

}

delete [] objects;

for (int i=0; i < NUM_LIGHTS; ++1i) {
delete lights[i];

}

delete [] lights;

Algorithm .89: Scene class definition

If one or more lights are blocked and thus not visible, thiginting efects are not added to that point,

causing a shadow.

The dfficulty with creating this visible lights method is returnitig list of visible lights in an @icient
manner. A separate array of all visible lights can be gerdraich time the method is called. Alter-
natively the reference to the light array and an array ofgets representing the light elements that are
visible could be returned. Another possibility is to writeetmethod to behave in a manner similar to
the string tokenizer method: if a Point is provided, the mdthreturns the first light visible from that
location. If a Point is not provided (i.e. ®JLL), the method returns the next light visible from the last
point provided, oNULL if no more lights are visible. Any of these approaches maydelu In the
example code, notice that the Point is passed by pointexddgif reference. Pointer use is necessary,
because there is rLL reference. Similarly, the return value is a pointer, beeaiuthiere are no more

visible lights,NULL must be returned. See Algorithm .91.

8. Update the Obiject class to have a method return tfiesai color value of the object. Thefllise
color value of an object is the color amount to add for eadht hgsible to the given object. Typically,

as scenes become more sophisticated with more light objéi¢iisse lighting will take on a more

180

www.manaraa.com

Scene::Scene (void) NUM_OBJS(4), NUM_LIGHTS(3) {

int i=0;

objects = new Object* [NUM_OBJS];

objects[i++] = new Floor (-2, Color (1.0, 235.0/255.0,
Color (139.0/255.0, 69.0/255.0,

objects[i++] = new Sphere (.75, Point (1.4, -1.25, -1.5),
Color (139.0/255.0, 0.0, 0.0));

objects[i++] = new Sphere (.75, Point (-1.5, -.25, -2.25),
Color (0.0, 1.0, 1.0));

objects[i++] = new Sky (.4, .5, 1.0);

i=0;

lights = new Light* [NUM_LIGHTS];

lights[i++] = new Light (.25, Point (-1.5, 2.5, 0.5));

lights[i++] = new Light (.25, Point (1.5, 2.5, 0.5));

lights[i++] = new Light (.25, Point (0.0, 3.5, 0.5));

}
intersection Scene::first_visible (const Point &sp,
const Point &dp) const {
static intersection curr = {NULL, Point::MAX+1, Point()};
static intersection closest (curr);
closest.t = Point::MAX+1;
for(int i=0; i < NUM_OBIJS; ++i) {
if (objects[i]->get_intersect(sp, dp,
{
closest = curr;
}
}
for(int i=0; i < NUM_LIGHTS; ++i) {
if (lights[i]->get_intersect(sp, dp,
{
closest = curr;
}
}

return closest;

Algorithm .90: Addition of Lights to the Scene

205.0/255.0),
19.0/255.0));

curr) && curr.t < closest.t)

curr) && curr.t < closest.t)

181

www.manaraa.com

con

st Light * Scene::next_light_visible (const Point *pt) const {
static Point cur_pt (0,0,0);

static int i=0;

intersection first;

if (pt !'= NULL) {
cur_pt = *pt;
i=0;
}
while (i < NUM_LIGHTS) {
first = first_visible (cur_pt, lights[i]->location());
if (first.obj == lights[i++]) {
return (Light *)first.obj;

}
}
return NULL;
}
Algorithm .91: Method to iteratively return the next light visible from avgn point
virtual Color get_diffuse (const Point &spot) const = 0;
Algorithm .92: Addition of a difuse color method in the Object class
prominent role and ambient lighting a less important oner riaw, the difuse color value for the
objects can be the same as the ambient values. As studewim®dacore creative and wish to exert
more control over the raytracer, they can modify the ambéent difuse values of each object. See
Algorithm .92.

9. Update the Sphere class, Floor class, Sky class, and ¢tlags to override thget_diffuse method.
Sky and Light should not react at all to lightinffects and should merely return black. For now, Sphere
and Floor can just return the ambient values. See Algoriffgn .

10. Update the Obiject class to have a method specifying whathobject responds to lightinffects. By
default, an object does respond to lighting. Update Sky dgttlto override theallows_lighting
method to return false, since neither reacts féudee (or specular) lighting. See Algorithm .94.

11. Update the Color class to allow channel-by-channelteatdof Color objects. This addition will be

used to add diuse color onto ambient color. Since théfdse value will be added onto the ambient
value, the Color class should overload theoperator. This operator adds the values passed in to the

local values. In overloading any operator, it is best to clynip the standard use of that operator.

182

www.manaraa.com

// in

// in

// in

Sphere.h
virtual Color get_diffuse (const
return get_ambient (spot);

}

Floor.h
virtual Color get_diffuse (const
return get_ambient (spot);

}

Sky.h

virtual Color get_diffuse (const
return Color (0,0,0);

}

Light.h

virtual Color get_diffuse (const
return Color (0,0,0);

}

Point &spot) const {

Point &spot) const {

Point &spot) const {

Point &) const {

Algorithm .93: Creation of difuse color methods in child classes

// in

// in

// in

Object.h

virtual bool allows_lighting (void) const { return true; }

Sky.h

virtual bool allows_lighting (void) const { return false; }

Light.h

virtual bool allows_lighting (void) const { return false; }

Algorithm .94: Addition of boolean method specifying whether lightinteats this object

183

www.manaraa.com

/7

//

con

in Color.h
const Color &operator+= (const Color &);

in Color.cpp
st Color &Color::operator+= (const Color &color) {
for (int i=RED; i <= BLUE; ++i) {
(*this)[i] += color[i];
}

return *this;

Algorithm .95: Color add-to operator overloading

Col

or Raytracer::trace_pixel (const Point &sp, const Point &dp) const {
intersection intersect = scene.first_visible (sp, dp);
Color pixel = intersect.obj->get_ambient (intersect.spot);

if (intersect.obj->allows_lighting()) {
const Light *light = scene.next_light_visible(&intersect.spot);
while (light) {
pixel += intersect.obj->get_diffuse(intersect.spot);
light = scene.next_light_visible (NULL);
3
}

return pixel;

Algorithm .96: Addition of diffuse lighting to color computation

12.

For example, €+ allows the following expressiona = (b += c);. Therefore, ther= operator
should return a reference to the result of the addition. I8iyj since(a += b) = c; is not valid,
the reference returned by the operator must be constant. Finally, this method altersttite sf the

object and cannot be declared constant. See Algorithm .95.

UpdateRaytracer: :trace pixel to add difuse lighting to the ambient value for each light that is

visible. Of course, lighting will be added only for objedtst allow lighting. See Algorithm .96.

The resulting image will have shadows (Figure 32. The next st to modify the dfuse lighting based

on the angle and distance to the center of the light.

184

www.manaraa.com

__]
Figure 32: Shadows on a bright scene

B.6.11 Phase9

The ninth phase is an OO program that creates an image of anified size with a sky, any number
of spheres, a checkered floor, shadows, afidisks light contribution based on light distance and surface
normal. The difuse contribution is proportional to the cosine of the anglisvieen at any surface point, the
surface normal at that point and a unit vector pointing talthe light source. The cosine of the angle to the
light will be obtained using the dot product method. Reqilikaowledge: distance formula, normalizing a

vector, Sphere normal, and Lambert’s cosine law.

1. Create a distance method in the Point class. This methwetisssary for determining the distance to a
light from a given location. The method should return theatise from the point the method is called

to its parameter, also a point. The distance between twdgsithe Euclidean distance, given by

distance= \/ (X2 = X1)2 + (Y2 — Y1)? + (22 — 21)? (20)

Using the previously-overloadetberator- anddot_prod methods in the Point class, computing

distance is simple. See Algorithm .97.

185

www.manharaa.com

// in Point.h
double distance (const Point &pt) const;
Point operator/ (double divisor) const;
Point get_unit_vector (const Point &dp) const;

// in Point.cpp
double Point::distance (const Point &pt) const {
Point diff = *this - pt;
return sqrt (diff.dot_prod (diff));
}
Point Point::operator/ (double divisor) const {
return Point (x/divisor, y/divisor, z/divisor);
}
Point Point::get_unit_vector (const Point &dp) const {
double dist = distance (dp);
if (fabs(dist) < MIN) {
// if the distance is 0, return a 0-length vector
return Point (0, 0, 0);
} else {

Point diff = dp - *this;
return diff/dist;

Algorithm .97: Point distance, division and unit vector

186

www.manharaa.com

bool Sky::get_intersect(const Point &sp, const Point &dp,
intersection &intersect) {
intersect.t = Point::MAX;
intersect.spot = sp.get_unit_vector(dp);
intersect.obj = this;
return true;

Algorithm .98: Definition of Sky intersection

2. Create a method in the Point class for normalizing a vedionormalized vector is a vector whose
length is one, also known as a unit vector. This normalizirghod will be used to assist in computa-

tion of the angle to the light. You may recall that

XY = [X|IY|co® (21)

whereg is the angle between vectaXsandY. If vectorsX andY are normalized (i.e. unit vectors), the

dot product produces simpbo 9.

The unit vector of a given vector can be computed using thieviig formula: unit = gggg; If

“distance” is the distance from the starting point to thexdiion point, the unit vector is computed as

follows:
unity = Zﬁ;;af&
unit, = SeSB (22)
unit, = g&%e

Since normalization is dependent upon division of the comepts by a scalar, it is a good idea to
first define a division method by overloadingerator/. With Point subtract and division available,
normalizing is simple. One error condition to handle is tlesgbility that the distance between the

points is zero (or close to it).

3. Update thesky: :get_intersect to compute the intersection point as the normalized vecton f
the starting point to the direction point. Until now, the Skintersection point has been simply the
direction point. However, the blueness of the sky is baseitiscangle. Now that vector normalization

is available, this issue can be corrected. See Algorithm .98

4. Update the object classes to return the surface normabrvat a given point for the object. The

187

www.manaraa.com

A Normal

Angle to the light
htersection

Figure 33: Angle to the light

virtual Point get_normal (const Point &) const = 0;

Algorithm .99: Purely virtual normal computation method in Object class

“normal” to a surface at a given point is a vector perpenaicto it. Normal vectors are often made
unit length and thus called “unit normals.” Unit surface mais are needed for the objects in order
to compute the diuse contribution to lighting at each surface point. Theatefnormal and the unit
vector to the light provide the angle that determines therexéf the difuse contribution. The dot
product of the normal and unit vector toward the light is theine of the angle between them. (Figure
33).

As usual, the Object class will not directly implement thetinogl for computing the normal and will

be overridden by the inheriting classes. See Algorithm .99.

The normal for the floor is the easiest to compute since it allays be straight up: (0, 1, 0). See

Algorithm .100.

Since the surface of the sphere is curved, every point onghers has a tlierent surface normal.

188

www.manaraa.com

// Floor get_normal

virtual Point get_normal (const Point &) const {
static Point normal (0, 1, 0);
return normal;

}

// Sphere get_normal

virtual Point get_normal (const Point &pt) const {
return center.get_unit_vector (pt);

}

// Sky get_normal

virtual Point get_normal (const Point &pt) const {
return pt; // irrelevant

}

Algorithm .100: Normal computation

Color operator* (double mult) const {
return Color (red*mult, green*mult, blue*mult);

}

Algorithm .101: Color scaling method

Fortunately computation of the normal is very simple heie ta line drawn from the center of the
sphere through the given point is perpendicular to the saréd that point. Therefore, to compute the

unit normal at a given point for a sphere, simply subtractémter point from the intersection point.

The normals for Sky and Light are irrelevant, sincéfuie lighting does not impact them. However,
since the method is purely virtual, it must be overriddenlirchild classes. Light does not need to
override it, since Sphere handles it for light. Since skysmal could be anything, returning merely

the passed in point will gtice.

. Update the Color class to overload the multiplicationrapi. Since the brightness of the lighting
will be scaled by the distance and angle to the light, Coloitsneed to be scaled, component by

component, using multiplication with a double. See Aldwrit.101.

. UpdateRaytracer: : trace_pixel to diminish the contribution of each light based on its disaand
the cosine of the angle from the intersection point. (Lartbeosine law says that the total radiant
power observed from a “Lambertian” surface is directly pijpnal to the cosine of the angle between
the observer’s line of sight and the surface normal.) Theeasf the angle to the light will be obtained

using the dot product method, singe Y = |X||Y|co9. If the object reacts to lighting, the first visible

189

www.manaraa.com

Color Raytracer::trace_pixel (const Point &sp, const Point &dp) const {
intersection intersect = scene.first_visible (sp, dp);
Color pixel = intersect.obj->get_ambient (intersect.spot);
if (intersect.obj->allows_lighting()) {
const Light *light = scene.next_light_visible(&intersect.spot);
Point unit_dir;
double dist, weight;
Object *obj = intersect.obj;

while (light) {
unit_dir = intersect.spot.get_unit_vector (light->location());
dist = intersect.spot.distance (light->location());
weight = obj->get_normal (intersect.spot).dot_prod(unit_dir);
weight /= dist;
pixel += obj->get_diffuse(intersect.spot) * weight;
light = scene.next_light_visible (NULL);

}

}

return pixel;

Algorithm .102: Raytracer’s pixel trace method

light in the scene should be located. The distance to eadlerlight is computed.

Once again, the dot product of the two unit vectors (the nband the unit vector toward the light)
is the cosine of the angle. The resulting cosine is storedvagght.” The cosine “weight” will now
be divided by the distance to the light, since a far light doeshave the intensity of a close light.
Light intensity attenuates with the square of the distabog for short distances found in raytraced
scenes, linear attenuation often provides better visalti® Finally, using the overloaded= and=

operators, scale theftlise value by the weight and add the result to the final pixelezal

The resulting image is shown in Figure 34.

B.6.12 Phase 10

The tenth phase is an OO program that creates an image of aoifisp size with a sky, any
number of spheres, a checkered floor, shadows, digtamgle dependent filuse lighting contribution, and
overall light reduction attenuation with distances. Altlgh the actual attenuation of light is not necessary, the
addition of a double tracking the distance light has travé&enecessary for specular lighting. (If you do not

wish to attenuate light, you could instead drastically mlihe ambient contribution.) Required knowledge:

190

www.manaraa.com

Figure 34: Lighting with diffuse component

nothing new.

1. Overload the divisiglassignment operatoy£) in the Color class to allow the channels of a color to
be divided by a scalar double. This division is necessarafi@nuating the light value with distance.
Since the operator involves assignment, it is a mutator atk#imd cannot be constant. Like previous

similar operators, it should return a result of the divisioat cannot be modified. See Algorithm .103.

2. Light intensity will decrease with scaled distance. @reaconstant float representing the scale factor
on distance. A suggested starting weightisand each student can alter the value as appropriate. See

Algorithm .104.

3. Add a parameter tRaytracer: : trace pixel specifying how far the light has traveled at the instant
the method is called. At this point, the traveled value isaglsithe same (zero), becausece pixel
will be invoked only once for each pixel. However, with théelaaddition of specular lighting, which

requires recursion, the distance traveled will vary. SegoAthm .105.

4. Add to the “traveled” variable the distance traveled fritnv@ starting point to the current intersection

point. It is fine to update the variable for intersectionshwany object; however, only objects that

191

www.manharaa.com

// in Color.h
const Color &operator/= (double);

// in Color.cpp
const Color &Color::operator/= (double divisor) {
for (int i=RED; i <= BLUE; ++i) {
(*this)[i] /= divisor;
}
return *this;

Algorithm .103: Sphere class normal computation

// in Raytracer.h
private:
static const float DIST_WEIGHT=.4f;

Algorithm .104: Declaration of the weight that distance has in this Raytrace

// in Raytracer.cpp
Color Raytracer::trace_pixel (const Point &sp, const Point &dp,
double traveled) const {

Algorithm .105: Addition of a distance-traveled-so-far parameter

192

www.manharaa.com

intersection intersect = scene.first_visible (sp, dp);
Color pixel = intersect.obj->get_ambient (intersect.spot);

if (intersect.obj->allows_lighting()) {
const Light *light = scene.next_light_visible(&intersect.spot);
Point unit_dir;
double dist, weight;
Object *obj = intersect.obj;

traveled += sp.distance (intersect.spot);

while (light) {
unit_dir = intersect.spot.get_unit_vector (light->location());
dist = intersect.spot.distance (light->location());
weight = obj->get_normal (intersect.spot).dot_prod(unit_dir);

weight /= dist;

pixel += obj->get_diffuse(intersect.spot) * weight;
light = scene.next_light_visible (NULL);

}
pixel /= DIST_WEIGHT * traveled;

}

return pixel;

Algorithm .106: Raytracer::tracgixel update

respond to lighting will have their brightness reduced odistances. That is, sky and lights will

always return the same brightness values. See Algorithf .10
5. Atthe end oRaytracer: :trace pixel, divide the pixel by the scaled distance traveled.

6. Update thRaytracer::trace method to pass the distance the light has traveled (zerdhelfe-
sulting image is too dark, the distance traveled could berg& smaller initial value, sayl. See

Algorithm .107.

The resulting image should look more realistic. The scaliight on the distance, the starting dis-
tance, the eye position, and the ambient arftlide weights can all be adjusted to get more realistic

images. See Figure 35.

B.6.13 Phase 11

The eleventh phase is an OO program that creates an image spenified size with a sky, any

number of spheres, a checkered floor, shadows, distamgle dependent lighting contribution, overall light

193

www.manaraa.com

void Raytracer::trace (void) {
Point dir;
Color color;

for (int i=0; i < height; ++i) {
for (int j=0; j < width; ++j) {
dir = Scene::virtual_coord (i, j, height, width);
color = trace_pixel (eye, dir, 0.0);
color.to_byte_range ();
for (int k=RED; k <=BLUE; ++k) {
image[(i*width +j)*CHANNELS + k] = (unsigned char)color[k];
}

Algorithm .107: Addition of initial distance traveled argument to the pikelce invocation.

Figure 35: Light attenuation with distance

194

www.manaraa.com

// in Point.h
Point operator* (double mult) const;
const Point &operator-= (const Point &pt);
const Point &operator+= (const Point &pt);

// in Point.cpp
Point Point::operator* (double mult) const {
return Point (x*mult, y*mult, z*mult);

}

const Point &Point::operator-= (const Point &sub) {
for (int i=X; i <=Z; ++1i) {
(*this)[i] -= sub[i];
}
return *this;

3

const Point &Point::operator+= (const Point &add) {
for (int i=X; i <=Z; ++1i) {
(*this)[i] += add [i];
}

return *this;

Algorithm .108: Point arithmetic methods

attenuation with distance, and specular reflectivity. Rffity is produced in a raytracer by bouncing rays
off reflective objects and recursively tracing their paths. Regl knowledge: bouncing a ray with the law of

reflection, recursion.

1. Update the Point class to overload the multiplicatiorrafme, subtractiofassignment operator, and the

additionassignment operator to be used with bouncing rays. See i&kigor108.

2. Update the Point class to have a method to reflect an ingprayaround the surface normal. The
angle of the incoming ray to the normal (angle of incidenc®) the angle of the outgoing, reflected
ray (angle of reflection) are equal, with the normal bisecthem. To compute the angle of reflection,
use the reversed incoming raeversed and the normal. Note thatre flected: N = inreversea N, as
desired.

reflected= (2N X (inreversed' N)) — iNreversed (23)

The bounce method assumes that the Point object on whictcéllisd is the normalized, reversed

incoming ray. See Algorithm .109.

195

www.manaraa.com

incoming
(from

intersection to
starting point)

Figure 36: Vector bounce illustration

// in Point
Point

// in Point
Point Point

.h
bounce (const Point &normal) const;

. Cpp
::bounce (const Point &normal) const {

Point outgoing = normal * (2 * dot_prod (normal));
return outgoing -= *this;

Algorithm .109: Vector bounce function

196

www.manaraa.com

// in Object.h
class Object {
protected:
Color reflect;
public:
Object () : reflect (0.0,0.0,0.0) {}
Object (const Color &r) : reflect (r) {}
const Color &reflectivity () const { return reflect; }

// no change in Sky.cpp

// in Floor.cpp
Floor::Floor (double ht, const Color &cl, const Color &c2,
const Color &r) : Object (r), height (ht), colorl(cl), color2(c2) {}

// in Sphere.cpp

Sphere: :Sphere (double r, const Point &cen, const Color &col,
const Color &ref)
Object (ref), radius (r), center (cen), color (col) {}

// in Light.cpp
Light::Light (double r, const Point &cen)
Sphere (r, cen, Color (1,1,1), Color(0,0,0)) {}

Algorithm .110: Addition of reflectivity attributes to Scene Objects

3. Update the objects to have reflectivity components. Theustnof reflectivity an object has is a value
in the range [0.0, 1.0] and represents the percentage ofjeetts color that is based on reflectance.
The complement, 4 re flectivity, is the amount of ambiefdiffuse light that the object’s color is based
on. Each rgbh channel can have &elient reflectance weight. Since reflectance must be reiessen
three doubles, the reflectivity for each object will be reypreted as a Color object. Reflectivity does
not need to depend on the location on the object, though Itlcdn there examples here, reflectivity
does not require the location of the intersection. The Qljkxss can implement reflectivity for all
objects. Sky will rely on Object’s default constructor (ahdrefore will not need to be altered), while
Floor, Sphere, and Light will use the other constructor fettisg reflectivity to values other than 0.

See Algorithm .110.

4. Update the Scene objects to now have reflectivity. It i theg all objects have at least some reflec-
tivity, since most natural objects do. In the example, tre(@lor (139.6/255.0, 0.0, 0.0))

sphere has extra red reflectivity, and the cyan sphere isledehpreflective. See Algorithm .111.

197

www.manaraa.com

Scene::Scene (void) : NUM_OBJS(4), NUM_LIGHTS(3) {

int i=0;

objects = new Object* [NUM_OBJS];

objects[i++] = new Floor (-2, Color (1.0, 235.0/255.0, 205.0/255.0),
Color (139.0/255.0, 69.0/255.0, 19.0/255.0),
Color (.02, .02, .02));

objects[i++] = new Sphere (.75, Point (1.4, -1.25, -1.5),
Color (139.0/255.0, 0.0, 0.0),
Color (.6, .2, .2));

objects[i++] = new Sphere (.75, Point (-1.5, -.25, -2.25),
Color (0.0, 1.0, 1.0),
Color (1.0, 1.0, 1.0));

objects[i++] = new Sky (.4, .5, 1.0);

Algorithm .111: Definition of objects to have reflective components

5. Create ®aytracer: :add diffuse method to simplify the structure of the
Raytracer: :trace pixel method. With all the work being done for each pixel, the

trace_pixel method is getting long and complicated. See Algorithm .112.

6. Create &aytracer::compute_specular method to compute and return the reflected color at a given
point. The method of computing the specyieflected value is teecursivelycall trace_pixel starting
at the intersection point toward the direction of the bowsmgle. Therefore, the first step in computing
specular reflectivity is to compute the normal at the intetiea point, as well as the unit vector from
the intersection toward the starting point. These unitamecare needed for computing the reflection

vector. See Algorithm .113.

The outgoing unit direction vector will be used in the refiecttrace with the intersection point used
as the starting point. Sincerace_pixel depends on a starting point and direction point (not a unit
direction vector), the starting point should be added touthi¢ direction vector in order to generate
a direction point. Thus the starting point will be the inemgon point, and the direction point is the

bounced unit vector plus the intersection point.

7. Update the Color class to support the operations needaddadn specular. The specular contribu-
tion will be weighted by the object’s reflectivity componefihe difus¢ambient contribution will be
weighted by the complement of the object’s reflectivity cament, 10 — re flectivity. Therefore, to
compute specular, the Raytracer needs the ability to niplktiplors by colors (per-component multi-

plication) and to find the negative or complement of a colee 8lgorithm .114.

198

www.manaraa.com

// in Raytracer.h
void add_diffuse (Color &, const intersection &) const;

// 1in Raytracer.cpp
void Raytracer::add_diffuse (Color &pixel,
const intersection &intersect) const {
const Light *light = scene.next_light_visible(&intersect.spot);
Point unit_dir;
double dist, weight;
Object *obj = intersect.obj;

while (light) {
unit_dir = intersect.spot.get_unit_vector (light->location());
dist = intersect.spot.distance (light->location());
weight = obj->get_normal (intersect.spot).dot_prod(unit_dir);

weight /= dist;

pixel += obj->get_diffuse(intersect.spot) * weight;
light = scene.next_light_visible (NULL);

Algorithm .112: Separation of dfuse color computation

Color Raytracer::compute_specular (const intersection &intersect,
const Point &sp, double traveled) const {

Point normal = intersect.obj->get_normal(intersect.spot);

Point incoming = intersect.spot.get_unit_vector (sp);

Point outgoing = incoming.bounce (normal);

outgoing += intersect.spot;

Color specular = trace_pixel (intersect.spot, outgoing, traveled);
return specular;

Algorithm .113: Computation of specular reflectivity

199

www.manaraa.com

// in Color.h
const Color &operator*= (const Color &);
Color complement () const {
return Color (1.0-red, 1.0-green, 1.0-blue);

¥

// in Color.cpp
const Color &Color::operator*= (const Color &color) {
for (int i=RED; i <= BLUE; ++i) {
(*this)[i] *= color[i];
}

return *this;

Algorithm .114: Color scaling methods

8. Updatetrace_pixel to halttracing after the maximum distance has been trav8iedetrace_pixel
will be called recursively, there must be a base case. The t&se occurs when the light has trav-
eled past the maximum allowable distanBejint: : MAX. If the passed-in distance traveled exceeds

Point: :MAX, black is returned. See Algorithm .115.

9. Updatetrace_pixel to appropriately invoke the new methods and include specefiectivity.

The resulting image should have reflective spheres andfalgligflective floor: Figure 37.

B.6.14 Phase 12

The twelfth phase is an OO program that creates an image o$pawified size with a sky, any
number of spheres, a checkered floor, shadows, digtamgle dependentfiluse lighting contribution, overall
light distance attenuation, specular reflectivity, and-ali&sing.Anti-aliasing is the technique of minimizing
the distortion artifacts known as aliasing when represamta high-resolution image at a lower resolution
The edges of the spheres, and the reflections in them have sloety edges that do not adequately represent
the appropriate round shapes. Anti-aliasing techniquéésmioth the boxy, pixelated edges in the images.
The method of anti-aliasing used here is performing mudtiphces for each pixel with pseudo-randomly
jittered direction points. These multiple jittered traeee averaged to determine the final pixel value. The
result of using the average of multiple, jittered traceslidemded final pixel value that smoothes transitions

between colors in the image.

Covered knowledge: random number generation, a methodnefrgéng arbitrary direction points.

200

www.manaraa.com

// 1in Raytracer.cpp
Color Raytracer::trace_pixel (const Point &sp, const Point &dp,
double traveled) const {
static const Color BLACK;
if (traveled > Point::MAX) return BLACK;
intersection intersect = scene.first_visible (sp, dp);
Color pixel = intersect.obj->get_ambient (intersect.spot);

if (intersect.obj->allows_lighting()) {
add_diffuse (pixel, intersect);

traveled += sp.distance (intersect.spot);
pixel /= DIST_WEIGHT * traveled;
Color specular = compute_specular (intersect, sp, traveled);
specular *= intersect.obj->reflectivity(Q);
pixel *= intersect.obj->reflectivity().complement();
pixel += specular;

}

return pixel;

Algorithm .115: Update of tracepixel

Figure 37: Scene with reflectivity

201

www.manaraa.com

// in Raytracer.h
private:
static double jitter (int base, int number);

// in Raytracer.cpp
double Raytracer::jitter (int base, int number) {
double radical_inverse = 0.0;
double digit_place = 1.0/base;
while (number > 0) {
radical_inverse += digit_place * (number%base);
number /= base;
digit_place *= 1.0/base;
}

return radical_inverse;

Algorithm .116: Pseudo-random jitter method

1. Create gjitter method to “randomly” generate values in the range [0.0,. 1Thje pseudo-random
numbers will be generated using the Halton sequence. Tremalp-random numbers will assist in
generating jittered directions for the rays. Varying thediion points slightly will lower the aliasing
effects. The code for generating the Halton sequence may bélptbverbatim to students, but the

algorithm is explained here for the instructor’s sake:

(a) Choose a prime base (passed-in). Typically a 2 or 3.
(b) Find the radical inverse of the provided number in theseimbase:
i. Convert the provided number to that base. (e.g. 4 in bad®Q)
ii. Reverse the bits of the number. (e.g. 100 becomes 001)
iii. Putadecimalin the front. (e.g. 001 becomes .001)

iv. Convert back to base 10. (e.g. .001 becom8} 1

The jitter method is not dependent in any way on the stateeofdlitracer and can therefore be static.
See Algorithm .116. This converts the given number, plac@lace, to the radical inverse by comput-
ing the remainder after division by the given base and adidlimicthe appropriate decimal place to the

final result.

Each time through the loop, the new digit place is calculageg. ifbase is 2, the digit place i%, ‘—11,

1 1
g E,etC.

202

www.manaraa.com

// in Raytracer.h
private:
static const int NUM_TRACES=8;
Color antialias_trace(const Point &,int,int,double) const;

// in Raytracer.cpp
Color Raytracer::antialias_trace (const Point &sp, int row,
int col, double traveled) const {
Point dir = Scene::virtual_coord (row, col, height, width);
Color colorSum = trace_pixel (sp, direction, traveled);
for (int i=1; i < NUM_TRACES; ++i) {
dir = Scene::virtual_coord((int) (row-.5+jitter(2,1)),
(int) (col-.5+jitter(3,i)), height, width);
colorSum += trace_pixel (sp, dir, traveled);
}
return colorSum /= NUM_TRACES;

Algorithm .117: Raytracer’s anti-aliasing trace

2. Create a constant representing how many traces to peptarpixel in order to perform anti-aliasing. A
suggested number is 8, but during testing, students maytwigbe smaller numbers to lower runtime.

See Algorithm .117.

3. Create a method to perform multiple traces for each pisielgijittered direction points. First perform

the normal trace.

Next perform thelUM_TRACES-1 more traces at jittered direction points. Both iend they directions

are jittered in the range [-.5, .5] using bases of 2 and 3 amduhrent value of the loop counter.

4. Update thRaytracer::trace method to calantialias_trace instead oftrace_pixel. See Al-
gorithm .118. The resulting program will be approximat@f1_TRACES slower than before. However

the aliasing ffects will be greatly reduced. See Figure 38.

B.6.15 Phase 13

The thirteenth phase is an OO program that creates an imaaygyapecified size with a sky, any
number of spheresany number of boxea checkered floor, shadows, distaiargle dependentfiuse light-
ing contribution, overall light attenuation with distanepecular reflectivity, and anti-aliasing. Boxes in this
raytraces are defined as 3D cubes whose sides are alignethaithy, and z axis. Thus, a box is defined by

merely twox, y, zcoordinates: a minimum xyz value designating the left, lofa corner, and the maximum

203

www.manaraa.com

void Raytracer::trace (void) {
Color color;
for (int i=0; i < height; ++i) {
for (int j=0; j < width; ++j) {
color = antialias_trace (eye, i, j, 0.0);
color.to_byte_range ();
for (int k=RED; k <=BLUE; ++k) {
image[(i*width +j)*CHANNELS + k] = (unsigned char)color[k];

}

Algorithm .118: Invocation of anti-aliasing trace from Raytracer loop

Figure 38: Anti-aliased image

204

www.manaraa.com

#include <math.h>
#include "Object.h"

class Box : public Object {
private:

Point left_low_far;

Point right_high_near;

Color color;

static bool is_equal (double dil, double d2) {
return (fabs (dl1-d2) < Point::MIN);

}

static void swap (double &d1, double &d2) {
static double temp;

temp = di;
dl = d2;
d2 = temp;
}
public:

Box (const Point &, const Point &, const Color &, const Color &);
virtual Color get_ambient (const Point &) const;
virtual Color get_diffuse (const Point &spot) const {
return get_ambient (spot);
}
virtual bool get_intersect(const Point &sp, const Point &dp,
intersection &intersect);
virtual Point get_normal (const Point &) const;

Algorithm .119: Box class definition

xyz value designating the right, upper, near corner. Reqguinowledge: ray-box intersection, comparison

of doubles.

1. Create th®ox.h header. The Box class is very similar to other object clabsést has two Points
defining its location: a point on the left, lower, far cornamd a point on the right, upper, near corner.
See Algorithm .119. In order to simplify the box intersentiater, create a private, static_equal
method to determine whether two doubles are approximatglgleand create a private, static swap

method for swapping two doubles.
2. Implement the simple parts of the Box clas8ax . cpp. See Algorithm .120.

3. Implement the Box intersection method. The/bayx intersection method tests for intersection of the

ray with all 6 planes defining the box: left (miplane), right (max plane), bottom (mity plane), top

205

www.manaraa.com

#include "Box.h"

Box::Box(const Point &min, const Point &max, const Color &c,
const Color &r) : Object (r), left_low_far(min),
right_high_near(max), color(c){}

Color Box::get_ambient (const Point &spot) const {

return color;

}

Algorithm .120: Box constructor and ambient color methods

lS&'\ far x plane far ¥ plane

Q ray
= near xplane nearx plane .
neary plane
far y plane - neary plane fary plane
\\ s
(a) Intersection (b) Failure to intersect

Figure 39: Intersection tests

(maxy plane), back (mirz plane), and front (max plane). The order in which the ray intersects these
planes determines whether a ray intersects the box deddripthe planesA ray intersects a boxyji

the three planes of the box closest to the ray are intersdmtéale the three planes of the box furthest

from the rayTherefore, if the ray intersects any of the far planes atdists less than any of the near

planes, the ray does not intersect the box. The images dératimg box intersection here use oy

andy planes for simplicity. See Figure 39.

If the ray is parallel to an axis, say axié= X, Y, 2), then the start point and direction point for the ray
have equat components. If this common value of theomponentis less than maplane or greater

than the max plane, the ray misses the box.

Since intersection occurs when all of the near sides aresitéed before all of the far sides, the key

206

www.manaraa.com

bool Box::get_intersect(const Point &sp, const Point &dp,
intersection &intersect) {

double tnear = -Point::MAX;
double tfar = Point::MAX;
double t1, t2;
for (int i=X; i <= Z; ++1i) {
if (is_equal(sp[il, dpl[il)) {
if (spl[il<left_low_far[i] || sp[il>right_high_near[i]){
return false;
}
} else {
tl = (left_low_far[i] - spli]) / (dp[i] - spl[il);
t2 = (right_high_near[i] - sp[i]) / (dp[i] - sp[il);
if (t1 > t2) swap (tl, t2);
if (t1 > tnear) { tnear = tl1; }
if (t2 < tfar) { tfar = t2; }

if (tnear > tfar || tfar < 0.0) return false;
}
}
if (tnear < Point::MIN) return false;
intersect.spot = sp * (l-tnear);

*

intersect.spot += dp
intersect.t = tnear;
intersect.obj = this;
return true;

tnear;

Algorithm .121: Initialization of Box intersection computation variables

values to locate are the furthest intersection with a neamgphnd the closest intersection with a far
plane. To accommodate this search, variahiesar and tfar will be initialized to extremely high
and extremely low values, respectively. Then, the inteigeof the ray within the two planes for each
component will be calculated and used to updatear andtfar. Since each component has two
planes to test, there are two t variables to store the distasong the ray to the points of intersection.

See Algorithm .121.

Equality of start point and direction point components nhestested to determine whether the ray is
parallel to an axis. If they are equal and if the starting geicomponent is outside of the range of the

left low_far point andright_high near point, there is no intersection.

If starting point’s corresponding component is not out & tange, testing on this component is com-

plete. However, if the starting point component and dimtpoint component are not equal, we must

207

www.manaraa.com

Point Box::get_normal (const Point &spot) const {
Point normal (0,0,0);
for (int i=X; i <=Z; ++1i) {
if (is_equal (spot[i], left_low_far[i])) {
normal[i] = -1;
return normal;
}
}
for (int i=X; i <=Z; ++1i) {
if (is_equal (spot[i], right_high_near[i])) {
normal[i] = 1;
return normal;
}
}

return normal;

Algorithm .122: Box class normal computation

calculate the distance along the ray to intersection withttto planes, using the same formula for

calculating thet value used with floor intersection.

Once the two distances for this axis have been calculatedcltser distance must be storedtin
with the farther int2. Now that the distances to the two planes have been caldytatear andtfar
must be updated to hold the furthest near plane and the tlasgdane, respectively. Once again, this
calculation is to confirm that all intersections with nears of the box occur before all intersections

with far planes of the box. Otherwise, the ray misses the box.

If the loop through thex, y, andz components completes andar >= 8.0, then the plane intersec-

tions occurred in proper order (near planes before far) aaday does indeed intersect the box.
Next, the intersection point with the nearest plane shoalddiculated using thenear value and the

information in the intersection structure variable shdutdupdated.

4. Implementthe Boyet normal method. Since the box is aligned with they, andz axes, the normals
are relatively simple: if the intersection was with the kfte, the normal is (-1, 0, 0); for the right, (1,
0, 0); for the bottom, (0, -1, 0); for the top, (O, 1, 0); for thack, (0, 0, -1), for the front, (0, 0, 1). The
normals for boxes are thus determined by which plane is hit,so they can be computed in a loop.

See Algorithm .122.

5. Add box objects to the scene (Algorithm .123.

208

www.manaraa.com

3Scene::Scene (void) : NUM_OBJS(6), NUM_LIGHTS(3) {

int i=0;
objects = new Object* [NUM_OBJS];

objects[i++]=new Floor(-2,Color(1.0,235.0/255.0,
Color (139.0/255.0,69.0/255.0,
Color (.02, .02, .02));

objects[i++]=new Sphere (.75, Point (1.4,

Color (139.0/255.0, 0.0,

Color (.6, .2, .2));

objects[i++]=new Sphere (.75, Point (-1.5,
Color (0.0, 1.0, 1.0),
Color (1.0, 1.0, 1.0));

objects[i++]=new Sky (.4, .5, 1.0);
objects[i++]=new Box(Point (-3, -2, -4.5),

Algorithm .123: Addition of boxes to the scene

Point (3,
Color (0, 1, 1), Color (.01,

objects[i++]=new Box(Point (-2, -2, -3.0),
Color (0, 1, 1), Color (.01,

Point (-1,

205.0/255.0),
19.0/255.0),

-3),
.01));
-1,
.01));

The resulting image should have two boxes: Figure 40.

B.6.16 Phase 14

The fourteenth phase changes the storage of the objects stéme to be a linked list. The purpose

for this data structure alteration is support for the nextgeh in which the objects in the scene are read from

a file. Required knowledge: linked lists, iteration.

1. Create a linked list Node class that contains Objects.sAkea case with most linked list nodes, this

class will contain a pointer to the Object and a pointer torthgt node. Additionally, the node class

has constructors, a destructor, anchdd_after method for inserting a passed-in node after this node.

This example implementation has the node class be a prinater, class of the Object linked list class.

See Algorithm .124.

If this node has any nodes after it, théd_after method is a little tricky, especially if the passed in

node is actually the first in a list of nodes. The passed-iref®)dhould be inserted between this node

and its next. Thus, if this node has a node after it, 1) find éilsehode in the passed-in list, 2) update

the next of that last node (in the passed-in list) to pointite hode’s next, and 3) change this node’s

next to be the node passed in. See Algorithm .125.

2. Create an iterator class for stepping through the nod#seitinked list. Of course, this class is not

209

www.manaraa.com

// in ObjList.h
#include "Object.h"
#include "Light.h"
#include <stdlib.h>

class ObjList {

private:
class Node {
public:
Object *object;
Node *next;
Node (Object *object);
Node (Object *object, Node *next);
“"Node () {
delete object;

}
void add_after (Node *new_node);

};

// in ObjList.cpp
ObjList::Node::Node (Object *obj) {
this->object = obj;
next = NULL;
}

ObjList::Node::Node (Object *obj, Node *next) {

this->object = obj;
this->next = next;

Algorithm .124: Linked list node class

void ObjList::Node::add_after (Node *new_node) {
// have the new node’s next point to what this’s next previously held

if (this->next != NULL) {

Node *current = new_node;
while (current->next != NULL) current = current->hext;

current->next = this->next;

}

this->next = new_node;

Algorithm .125: Linked list node add after method

210

www.manaraa.com

Figure 40: Scene with boxes

necessary, but it introduces iterators and also resuligipler code. The iterator should hold the node
that will be returned next, and should provide operatiorsdress the Object in that node, determine
if there are any more objects, and move to the next object. dperators typically overloaded for an
iterator areoperator* andoperator++. The dereferencing operator is used to obtain the object in
the current node, and the increment operator moves on taettternde in the list. This class can be an

inner class of the Object linked list, but it must be publieeR\lgorithm .126.

The iterator begins with the node passed in and completen thigecurrent node is NULL. See Algo-

rithm .127.

Since “current” always holds the next node to be returneglnttxt method must move to the next

node and then return the one before it. See Algorithm .128.
Dereferencing the iterator returns the object and the ntimede, and incrementing the iterator moves

the current to the next node. See Algorithm .129.

. Create the Object linked list based on the node and itectdeses. Since this linked list is custom
built, it may have features that would not be available othez. Specifically, special handling for

lights. When the raytracer iterates through objects totkotiae first object intersected by a ray, all

211

www.manaraa.com

// in ObjList.h
public:
class ObjectIter {

private:
Node *current;

public:
ObjectIter (Node *start);
bool has_next(void) const;
Object *next(void);
Object *operator*(void) const;
const ObjectIter &operator++ (void);

Algorithm .126: Linked list iterator class

// in ObjList.cpp
ObjList::0bjectIter::0bjectIter (Node *start) {
current = start;

}

bool ObjList::0bjectIter::has_next(void) const {
return current != NULL;

}

Algorithm .127: Linked list iterator methods

Object *ObjList::ObjectIter::next() {
Node *toReturn = current;
current = current->next;
return toReturn->object;

Algorithm .128: Iterator method for getting the next Object

Object *ObjList::ObjectIter::operator*(void) const {
return current->object;

}

const ObjList::ObjectIter &0ObjList::0bjectIter::operator++(void){
next () ;
return *this;

}

Algorithm .129: Iterator dereferencing and incrementing

212

www.manaraa.com

// in ObjList.h
#include "Object.h"
#include "Light.h"
#include <stdlib.h>

class ObjList {
private:
class Node { /* . . . see above code . . . */ };
Node *head, *tail, *first_light;

public:
class ObjectIter { /* . . . see above code . . . */ };

ObjList (void);

Algorithm .130: Beginning of Linked list code

“0ObjList (void) {
Node *current = head, *prev;
while (current) {
prev = current;
current = current->next;
delete prev;
}
}
void add (Light *object);
void add (Object *object);
ObjectIter iterator (void) const;
ObjectIter light_iterator (void) const;

Algorithm .131: Remainder of linked list class

objects and lights should be included. However, when th&aeagr is determining how many lights
are visible at a given spot, it should iterate only throughltbhts. Therefore, the example version of
the linked list has lights always added to the tail of thedistl other objects added to the head. In this
manner, a list of all objects or a list of only lights is avaia within the same linked list. Thus, the

linked list will have a pointer to head, tail, and the firstligSee Algorithm .130.
The destructor for a linked list must delete all memory usedhch node. See Algorithm .131.

The linked list can return an object iterator or a light iteraSee Algorithm .132.

4. Modify the Scene constructor to use the object linked [i8te instance variables of the Scene must

be changed as well to use the linked list instead of an arraind. linked list removes the need for

213

www.manaraa.com

// in ObjList.cpp
#include "ObjList.h"
ObjList::0bjList () : head(NULL), tail(NULL), first_light(NULL){}

// Lights are appended to the tail
void ObjList::add (Light *obj) {
Node *new_node = new Node (obj);
if (head == NULL) {
head = tail = new_node;
} else {
tail->add_after (new_node);
tail = tail->next;
}
if (first_light == NULL) first_light = new_node;
}

// All other objects are added at the head
void ObjList::add (Object *obj) {
Node *new_node = new Node (obj);
if (head == NULL) {
head = tail = new_node;
} else {
new_node->add_after (head);
head = new_node;

}

ObjList::0bjectIter ObjList::iterator () const {
return ObjlList::0bjectIter (head);
}

ObjList::0ObjectIter ObjList::light_iterator () const {
return ObjList::0bjectIter (first_light);
}

Algorithm .132: Creation of linked list functions

214

www.manharaa.com

// in Scene.h
class Scene {
private:
ObjList objects;

// in Scene.cpp
Scene::Scene (void) {
objects.add(new Floor(-2,Color (1.0,235.0/255.0,205.0/255.0),
Color (139.0/255.0, 69.0/255.0, 19.0/255.0),
Color (.02, .02, .02)));
objects.add (new Sphere (.75, Point (1.4, -1.25, -1.5),
Color (139.0/255.0, 0.0, 0.0),
Color (.6, .2, .2)));
objects.add (new Sphere (.75, Point (-1.5, -.25, -2.25),
Color (0.0, 1.0, 1.0),
Color (1.0, 1.0, 1.0)));
objects.add (new Sky (.4, .5, 1.0));
objects.add(new Box(Point(-3.0,-2.0,-4.5),Point(3.0,-0.5,-3.0)
, Color (0, 1, 1), Color (.01, .01, .01)));
objects.add(new Box(Point(-2.0,-2.0,-3.0),Point(-1.0,-1.0,-1.0),
Color (0, 1, 1), Color (.01, .01, .01)));

objects.add (new Light (.25, Point (-1.5, 2.5, 0.5)));
objects.add (new Light (.25, Point (1.5, 2.5, 0.5)));
objects.add (new Light (.25, Point (0.0, 3.5, 0.5)));

Algorithm .133: Scene objects in a linked list

variables for indicating how many lights and objects thensdeas. See Algorithm .133.

5. Modify Scene: : first_visible to use the linked list. The address of the object in the ctimede

is needed during iteration through the elements, and maybtsned by dereferencing the iterator.

Calling any methods on the object obtained by iterationféeeacing must be done by dereferencing

the object. See Algorithm .134.

6. UpdateScene: :next_light_visible to use the light iterator, as in Algorithm .135.

If the use of the linked list, iterator, or operator overlmagis seems too complex for students, they

could instead learn about linked lists in lab and use thedstahtemplate library list.

215

www.manaraa.com

intersection Scene::first_visible(const Point &sp,
const Point &dp) const {
static intersection curr = {NULL, Point::MAX+1, Point()};
static intersection closest (curr);
ObjList::0bjectIter iter = objects.iterator();
closest.t = Point::MAX+1;

for (;iter.has_next(); ++iter) {
if ((*iter)->get_intersect (sp, dp, curr) &&
cur.t < closest.t) {
closest = curr;
}
}

return closest;

Algorithm .134: First intersection method with a linked list

const Light * Scene::next_light_visible (const Point *pt) const {
static Point cur_pt (0,0,0);
static ObjList::0ObjectIter iter(NULL);
intersection first;

if (pt != NULL) {

cur_pt = *pt;

iter = objects.light_iterator();
}

while (iter.has_next()) {
first = first_visible (cur_pt, ((Light*)*iter)->location());

if (first.obj == *iter) {
++iter;
return (Light *)first.obj;
}
++iter;

}
return NULL;

Algorithm .135: Next light method with a linked list

216

www.manaraa.com

B.6.17 Phase 15

In the fifteenth phase, the scene to raytrace is read in frofe.a@iptionally, students can use the
input operatobperator>> to read in information. Required knowledge: file 10, (frieluhctions and the

input operator).

1. Create a file specifying the scene to trace. As usual, thepbe will be the same scene used through-
out. The format of the file should be one that is easy to unaedsand simple to read. The sample
file specifies the object to be read and then lists each atrifouany order) and its value. Spacing is

unimportant. See Algorithm .136.

2. Update the Point class to overload the input operator. ni@rmation is read from the scene file,
attributes will be read in using the input operator. e.g.in >> radius; will read in the next
double and store it in radius. Therefore, object reading bwgimplified by overloading the input
operator for the Point class to allow similar notatian: >> center;. Again, this feature is optional.
Alternatively, a “set” method may accept the file reader obgnd read in the values. (Ther€ file

reading class istd: :ifstream).

The tricky part about overloading the input (or output) @ter is that the first object to the operator
is the ifstream object and not the Point object. Therefdrene overloaded the input operator as
a member functionstd: :ifstream &Point: :operator>>(std::ifstream &);), the resulting
notation would be backwardenter >> in;. Instead, the input operator must be overloaniedide
of the Point class and accept two parameters: the ifstregectodnd the Point object. Unfortunately,
if the operator method is outside of the class, it cannotscB®int’s private members. Therefcaa,
overloaded input or output operator must be a friend functio the class for which the operator is

being overridden

Once the notation is covered, overloading the input opeffatothe Point class is simple. Since
ifstream objects can already read doubles, specifying how to reathtke components is all that is

necessary. See Algorithm .137.

3. Similarly, and for the same reasons, overload the inpetaipr for the Color class. See Algorithm

.138.

4. Create a constructor for Sphere that accepts an ifstrégeetdrom which to read in the object data.

Since the attributes for Sphere can be in any order, a loopldt® used to read in the four of them.

217

www.manaraa.com

Sky
horizon .4
base .5
blue 1.0

Sphere

center 1.4 -1.25 -1.5
radius .75

color .545 0 0
reflect .6 .2 .2

Sphere

center -1.5 -.25 -2.25
radius .75

color 0 0 ©

reflect 111

Floor

height -2

colorl .545 .27 .0745
color2 1 .92 .8
reflect .02 .02 .02

Box

min -3 -2 -4.5
max 3 -.5 -3.0
color ® 11

reflect .01 .01 .01

Box

min -2 -2 -3

max -1 -1 -1

color ® 11
reflect .01 .01 .01

Light
center -1.5 2.5 .5
radius .25

Light
center 1.5 2.5 .5
radius .25

Light

center ® 3.5 .5
radius .25

Algorithm .136: Scene specification file

218

www.manharaa.com

// in Point.h
class Point {
VA 4
friend std::ifstream &operator>> (std::ifstream &in,
Point &pt) {
in >> pt.x >> pt.y >> pt.z;
return in;
}
JE ../

Algorithm .137: friend function for reading in a Point

// in Color.h
class Color {

(4
friend std::ifstream &operator>> (std::ifstream &in,
Color &c) {
in >> c.red >> c.green >> c.blue;
return in;
}
VA 4

Algorithm .138: Friend function for reading in a color

219

www.manharaa.com

// in Sphere.h
Sphere (std::ifstream &);

// in Sphere.cpp
Sphere: :Sphere (std::ifstream &in) {
std::string attribute;
for (int i=0; i < 4; ++1i) {
in >> attribute;

if (attribute == "center") {
in >> center;

} else if (attribute == "radius") {
in >> radius;

} else if (attribute == "color") {
in >> color;

} else if (attribute == "reflect") {

in >> reflect;

}

Algorithm .139: Sphere constructor for reading a sphere

The first input is the string name of the next attribute. Thabhg may be matched to one of Sphere’s

attributes and read in using the input operator. See Algoritl 39.

5. Similarly create constructors in Box, Floor, and Sky tadén their own attributes. See Algorithm

.140, .141, and .142.

6. Update Light similarly to the others. There is one mindfedtence with the Light class. Since the
Light class inherits from the Sphere class, the Sphere classtructor is called for the object before
the Light constructor. Since the values for Light are reathim Light’s constructor, they cannot be
provided to the Sphere constructor at the time of invocafidws, the Sphere class must now provide

a default constructor. See Algorithm .143.

7. Update the Scene constructor to accept a character ariray specifying the input file name. Using
the specified filename, create a file reader objetil(:ifstream). Additionally, declare a method

for reading in the objects. See Algorithm .144.

8. CreateScene: :read objects. Object reading is dependent upon each object’s ability&al ritself
in. As long as the reader is not at the end of the file, it williktfae name of the next object and call

that object’s constructor. See Algorithm .145.

220

www.manaraa.com

// in Box.h
Box (std::ifstream &in);
// in Box.cpp
Box::Box (std::ifstream &in) {
std::string attribute;
for (int i=0; i < 4; ++1i) {
in >> attribute;

if (attribute == "min") {
in >> left_low_far;

} else if (attribute == "max") {
in >> right_high_near;

} else if (attribute == "color") {
in >> color;

} else if (attribute == "reflect") {

in >> reflect;

}

Algorithm .140: Box input constructor

// in Floor.h
Floor (std::ifstream &in);
// in Floor.cpp
Floor::Floor (std::ifstream &in) {
std::string attribute;
for (int i=0; i < 4; ++i) {
in >> attribute;

if (attribute == "height") {
in >> height;

} else if (attribute == "colorl") {
in >> colorl;

} else if (attribute == "color2") {
in >> color2;

} else if (attribute == "reflect") {

in >> reflect;

}

Algorithm .141: Floor input constructor

221

www.manharaa.com

// in Sky.h
Sky (std::ifstream &in);
// in Sky.cpp
Sky::Sky (std::ifstream &in) {
std::string attribute;
for (int i=0; i < 3; ++i) {
in >> attribute;

if (attribute == "horizon") {
in >> horizon;

} else if (attribute == "base") {
in >> base;

} else if (attribute == "blue") {

in >> blue;

}

Algorithm .142: Sky input constructor

// in Sphere.h
class Sphere : public Object {
public:
Sphere () : Object O {}

// in Light.h
Light (std::ifstream &in);

// in Light.cpp

Light::Light (std::ifstream &in) {
std::string attribute;
reflect.red = reflect.green = reflect.blue = 0.0;
color.red = color.green = color.blue = 1.0;

for (int i=0; i < 2; ++1i) {
in >> attribute;

if (attribute == "center") {
in >> center;
} else if (attribute == "radius") {

in >> radius;

}

Algorithm .143: Light constructor for reading input

222

www.manharaa.com

// in Scene.h
class Scene {
private:
static const int WIDTH = 4;
static const int HEIGHT= 3;
ObjList objects;
void read_objects (std::ifstream &);

public:
Scene (char *);

// in Scene.cpp

Scene::Scene (char *file) {
std::ifstream in (file, std::ios::in);
read_objects (in);

Algorithm .144: Added object reading method

void Scene::read_objects (std::ifstream &in) {

std::string type;
in >> type;
while (!in.eof()) {

if (type == "Sphere") {
objects.add (new Sphere (in));

} else if (type == "Light") {
objects.add (new Light (in));

} else if (type == "Box") {
objects.add (new Box (in));

} else if (type == "Floor") {
objects.add (new Floor (in));

} else if (type == "Sky") {

objects.add (new Sky (in));
}

in >> type;

Algorithm .145: Scene object reading

223

www.manharaa.com

// in Raytracer.h
class Raytracer {
public:
Raytracer(char *,int w=DEFAULT_WIDTH,int h=DEFAULT_HEIGHT) ;

// in Raytracer.cpp
Raytracer::Raytracer (char *name, int w, int h) : width (w),
height(h), eye (0.0, 1.5, 4.0), scene(name) {
image = new unsigned char [width*height*CHANNELS];
}

Algorithm .146: Raytracer scene name parameter

int main (int argc, char **argv) {
Raytracer *tracer;
if (argc > 3) {
tracer=new Raytracer(argv[l],atoi(Cargv[2]),atoiCargv[3]));
} else if (argc > 1) {
tracer = new Raytracer (argv[1l]);
} else {
std::cerr << "Usage: << argv[0]
<< " input file [width height]" << std::endl;
return EXIT_FAILURE;

}

tracer->create_image ();
delete tracer;

Algorithm .147: Main function that accepts an input file

9. Update the Raytracer constructor to accept a characteyr specifying the filename. See Algorithm

.146.

10. Update the main function to require the filename of thasde raytrace. If the user does not provide
a filename, print an error message. See Algorithm .147. Theeatbescribed raytracer should now be

able to read in scenes from an input file.

224

www.manaraa.com

Appendix C Algorithms and Data Structures Course Guide

C.1 Credits

4 (3 hour lecture and 2 hour lab)

C.2 Prerequisites

CPSC 102 or 210 with a C or better.

C.3 Course Goals
This course covers the following computer science knowdeatitd skills:
e Abstract data types.
e Fundamental data structures (lists, trees, heaps).
e Fundamental algorithms (searching, sorting, tree batanpeitc.).
¢ Ability to measure program running time and time complexity

¢ Algorithm analysis and design techniques.

C.4 Course Description

Algorithms and Data Structures is based on the implememtafiphoton mapping: an augmentation
to a raytracer that supports global illumination witlffdse color bleeding, caustics, and participating media.
NOTE:As of this writing, this course has been designed buatyebd taught. This guide will undoubtedly

require modifications after the first attempt to teach thesmuvhich is scheduled for Fall, 2007.

C.5 Resources

Likely the best resource for implementing and teaching phabapping is the guide provided by
Henrik Wann JensenA practical guide to global illumination using raytracingnd photon mappingin
ACM SIGGRAPH 2004 Course Notes (Los Angeles, CA, August 082,-2004), SIGGRAPH '04, ACM
Press, New York, NY. Not only is the guide a wealth of inforioat but it also lists twenty other sources for

reference on photon mapping, twelve on raytracing, fourata dtructures, and nearly sixty other references.

225

www.manaraa.com

C.6 Lesson Guide
C.6.1 Suggested Course Policies

1. Suggested textbookata Structures and Algorithm Analysis irr€ by Mark Allen Weiss, published
by Addison Wesley Publishing Company.

2. Maximum grade for simply meeting guidelines be lower th80%.
3. Allowance of problem discussion and minor debugging witier students.

4. Prohibition of code sharing, whether verbally or elegatcally.

C.6.2 Description of the Assignment

This is an important opportunity for the instructor to sélidents on the idea of investing time into
an assignment with exciting results. Selling the assigrimméght include the display of images the students

will be able to create, description of the technique, andamgtion of the impact of this technique in industry.

C.6.3 Provision of Raytracer

While providing starter code is not typically part of théyvn curriculum, photon mapping is an
addition to basic raytracing. Students should have their@ytracers from CS2 and may use them. However,
as most students will not have implemented refraction,beist to provide them with the compiled code of a
raytracer that supports reflection, refraction, vertical horizontal planes, and spheres to allow the creation
of the Cornell Box with a reflective and refractive spheree Pinovided raytracer should be instrumental to

allow the addition of photon mapping.

C.6.4 Phasel

Lighting with a photon map composed of photons (in an arraglomly-placed on a surface. The
benefit of randomly-placed photons is the ability to get alsesults before the entire algorithm is imple-
mented. Required knowledge: random numbers, beginningstiie complexity, nearest neighbor func-

tion, illumination algorithm.

1. Create afunction to randomly generate photons with xyglzes on an object in the scene (or multiple

objects in the scene).

226

www.manaraa.com

2. Create a photon structure to store information about égoh@.g. location, color, incoming direction).
3. Create a function to generat@hotons and store them in an array.

4. Create a nearest neighbor function that searches the(aeg slowly). This may be a good time to

begin discussion of runtime complexity.
5. Update the raytracer to include lighting from photon magp For added clarity, raytrace with no

lights other than the random photons.

C.6.5 Phase?2

Lighting with a photon map composed of unreflected photoms fa single point light stored in an

array. The runtime will still be remarkably slow. Requiratbkvledge: photon emission algorithm.

1. Create a function to randomly generatalirections from the point light. x, y, andz should be
randomly generated. The azimuth (longitude) maybe be gésrandomly from [(2z] and the
elevation (latitude) will have to be chosen with probabilitroportional to is circumference. i.e.,

A = 2n x randon{0, 1), e = arcsin(2randon{0, 1) — 1).

2. Trace each photon from the light toward the generatedtitireand scale the power by the number of

photons emitted.

3. Store each photon at the point of ray, object intersection

C.6.6 Phase 3

Lighting with a photon map composed of unreflected photorik wearest neighbor found via a

maxheap. Required knowledge: heaps and binary heap seucamplexity
1. Create a binary maxheap class for stonngearest neighbor photons.

2. Use the maxheap to improve thi@ency of locating the nearest neighbors.

C.6.7 Phase 4

Lighting with a photon map composed of unreflected photomredtin an unbalanced kd-tree. Re-

quired knowledge: kd-tree, complexity

227

www.manaraa.com

1. Create a kd-tree class to store the photonsffagient nearest neighbor searches.

2. Write the nearest neighbor search. This is a good timestuds time and space complexity.

C.6.8 Phaseb

Lighting with a photon map composed of photons that have beftected, transmitted, or absorbed
using Russian roulette to statistically determine the &dteach photon. If 50% of photons are absorbed
after the first intersection, another 50% of those reflectaédaosmitted should be absorbed after the second

intersection. Required knowledge: use of reflection angotibn, color bleed.

1. Create a function to randomly determine whether a phatoefiected, transmitted, or absorbed using

a randomly generated value (Russian roulette) and thetishifuse and specular attributes.

2. Modify the color of the photons that are reflected by th@icof the surface they interacted with. This

color alteration should produce a color bledktet.

C.6.9 Phase6

Lighting with a photon map composed of photons that are ¢t&@sed on a projection map. The
projection map limits photons emitted to directions thdt lead to an intersection with an object. Required

knowledge: matrices

1. Create a projection map from the light source consistidgtie cells with boolean values indicating

whether emissions in that direction will lead to intersegs.

2. Update the photon generation to generate only in dinestilbat will lead to geometry intersections.

C.6.10 Phase7
Lighting with a photon map that is a balanced kd-tree. Regliknowledge: balancing algorithm.

1. Update the kd-tree to be balanced to improffieiency.

C.6.11 Phase8

Lighting with a photon map and a caustic photon map. Cauatiesffects caused by light passing

through a refractive object or reflecting from a speculaeoband focusing to a strong intensity that causes

228

www.manaraa.com

highlights a dffuse object. A large number of photons should be emitted redractive surfaces to generate

good caustics. A separate caustic photon map should hotéshéting photons.

1. Create a second photon map to be used as the caustic phapon m

2. Create a second projection map that allows emission ththase geometries meant to generate caus-

tics.

3. Incorporate the caustic photon map into the lighting atgm.

C.6.12 Phase9

More accurate lightingféects can be achieved by using an ellipsoid neighborhoodfotoms ob-
tained by compressing the sphere neighborhood in the @ireof the surface normal. This modification
means that photons incorrectly used at edges and in coriilelevminimized. Required knowledge: com-
pression of sphere in the direction of the normal.

C.6.13 Phase 10

More accurate lighting feects can be achieved through use of a 2D Gaussian filteriftgrifg
reduces blurriness and leaked photons by increasing thghtvef photons that are close to the point of
interest. Required knowledge: Gaussian filters

C.6.14 Phase 11

Lighting with multiple lights and varying light types. Reiged knowledge: methods of emitting

photons from dierent light shapes.
1. Create functions to emit photons from any light source tyesired.
2. Add multiple lights (stored in a list) to the scene.

3. Scale the weight of the photons appropriately to accamniltiple lights.

C.6.15 Phase 12

Inclusion of participating media, such as fog. This topit liely need to be an optional challenge
for more advanced students and involves the creation oftam@imap and use of ray marching and a volume

radiance estimate.

229

www.manaraa.com

Appendix D Tools and Techniques for Software Development Gde

D.1 Credits

3 (2 hour lecture and 2 hour lab)

D.2 Prerequisites

A strong knowledge of programming and some knowledge of @iiented design.

D.3 Course Goals
This course covers the following computer science skills echniques:
e Understanding of Object-Oriented programming and design.
e Understanding of advanced OO techniques: inheritancgmpoiphism, abstract classes, etc.

e Understanding of advanced programming techniques: ewamdling, exceptions, threads, network

communications.

¢ Intermediate-level programming skills in Java.

D.4 Course Description

This course is structured around the creation of a GUI-hasettvorked chess game. To do some-
thing as large as a chess game, programmers must breakkhettasmaller phases (in line with the princi-
ples of Extreme Programming). This chess game can be braken ithto as many as 20 phases, which can
then be grouped into assignments as the instructor wishescrptions of each phase, including examples
solutions for the instructor to follow. These solutions erdava and are merely for guidance and not meant

to imply that there are not other, better ways to write chéesgipg programs.

D.5 Resources

In addition to the course textbook, Sun’s online J&aitorials are quite helpful and have up-to-date

information about all aspects of Jav&tp;/java.sun.comlocgbookgutorial/).

230

www.manaraa.com

D.6 Lesson Guide
D.6.1 Suggested Course Policies

1. Suggested texObject-Oriented Software Development Using J&&acond Edition, by Xiaping Jia,
2002.

2. Maximum grade for simply meeting guidelines be lower th80%.
3. Allowance of problem discussion and minor debugging witier students.
4. Prohibition of code sharing, whether verbally or elegctcally.

5. Requirement of individual, brief (5-10 minute) preséiotas on relevant topics. e.g., Java style con-
ventions (pp. 25, 103, 112, 649-651), Java 2 Platform (3. 56gb8), XP (1.4.3 pp. 15-16), UML (pp.
21-25), Javadoc (6.1.4 pp. 214-216, 647, 648), jar (pp. Z)1Hackages (4.5 pp. 134-138), Wrapper
Classes (4.4.9 pp. 128-130), String vs. StringfBu(4.4.8 pp. 118, Java API), replacement for goto:
break and continue with statement labels (4.3.7 pp. 99;16®rning strings (4.4.8 pp. 118-122),
Double Bufering (Example 5.3 p. 194), etc.

D.6.2 Selling the Assignment

This is an important opportunity for the instructor to sélldents on the idea of investing time into
an assignment with exciting results. Selling the assigrimméght include the display of images the students
will be able to create, description of the technique, andamgtion of the impact of this technique in industry.
D.6.3 Checkers Rules

While the final project is chess, checkers provides a sinpleiisg point that can be transitioned

smoothly into chess.

1. Played on an 8 x 8 checkered board. (International chedk@tayed on a 10 x 10 board withfidirent

capturingcrowning rules.)

2. Each of the two players begins with 12 round, matchinggsedth the plain sides facing up. The two

sets are pieces arefidirent colors (e.g. white and red).

3. The pieces are placed on the first three rows of the plagieleson the dark squares.

231

www.manaraa.com

4. Players take turng\ player loses when he cannot make a valid play.

5. If a piece reaches the end row opposite from its beginnd® & is crowned (typically, a second piece

is flipped over and stacked on top of it.) Crowned pieces altect&ings.” Uncrowned are called

“ ”

men.
6. Valid plays:

(@) Man: one diagonal “move” forward one square OR one or nd@gonal “jumps” forward two
squares over an opponent’s piece(s) that is diagonally gnare away. Jumped pieces are re-

moved.

(b) King: one diagonal move in any direction OR one or morgydial jumps in any direction(s)

over an opponent’s piece(s) diagonally one square awaypddipieces are removed.

7. If a player can jump, he must jump and continue to jump Ungtitannot jump or is crowned.

D.6.4 Object-Oriented Software Development

1. Purpose: “The object-oriented software developmenhotitlogy aims to significantly improve cur-
rent software development practicélfject-Oriented Software Development Using Jaud Ed., X.

Jia, p.2).

2. Software: “the source code as well as all the associateaidentation produced during the various ac-
tivities in the software development process. The docuaiiemt of software may include requirements
specifications, architecture and design documents, caoafign data, installation and user manuals,

and so on” (Ibid, p. 4).

3. Steps of OO development: 1) identify the classes, 2) ifyethe attributes and behaviors of the classes,
3) identify the relationships among the classes, 4) definectass interface, then 5) implement the

classes.

4. A class: a “blueprint” of an object that defines each olgdnstance variables and methods. A class
can have “class” variables and methods as well. There areapi¢s of class methods and variables

for each object but instead one copy for the entire class.

5. An object: an instance of a class; a variable whose tygeisof a class. An object receives a copy of

every instance variable and non-static method in the clabsough objects have access to the static

232

www.manaraa.com

6.

10.

11.

12.

13.

(class) variables and methods, there is only one copy of statit member for the class and all its

objects.
Creating an object and storing a reference to it:

(a) Declare areference variable (Java has primitive daastgnd reference variables) of the type of

the class you want the object to be an instance of . Regson p;

(b) Assign p to a new instance of the object by using the kegwemw to call its constructor. e.gp

= new Person ("Shirley");

. Calling non-static methods:

(a) Create an object of the class with the method you wishlto ca

(b) Use the object name, followed by a dot (.) before the netth@me and its arguments. e.g.

p.toString();

. Calling static methods: Use the class name, followed bgta)l before the method name and its

arguments. e.ginteger.parseInt("5");

. UML diagramming: class represented by a box with the classe at the top, data attributes under the

name, and methods under the data attributes. More detayibenfound in Jia’s textbook, pp. 21-23.

Identification of the nouns in checkers. e.g. game, pie@a, king, color, board, square, player, a

move, a jump, a play, window, message bar, network commtioica

Identification of the behaviors (verbs). e.g. play, mgump, can play, can move, can jump, crown,

send play, finish play, get play, set or clear piece, set ngedsar, draw.

Identification of relationships. e.g. king is a piecennma piece, board has squares, square has a
piece, player has pieces, pieces have color, game has a, lyaané has two players, player uses a

board.

Class structures will be explored more fully after thedaduction of the programming language: Java.
In order to get students up to speed more quickly, initialuezs on checkers rules and OO design can

be intermixed with Java material.

233

www.manaraa.com

D.6.5 Phase 1l

Phase one is the creation of an empty, GUI-based checkerbBaquired Material: Introductory

Java, Java graphics, inheritance, overriding methodsking parent methods.

1. Introduction to JavdM(background and structure). Note: this can be sprinkledl éatrly lectures in

order to get students on track sooner.

(a) Object-oriented programming language developed byeareh team led by James Gosling at

Sun Microsystems (Ibid, p. 55).

(b) Features: OO, distributed (designed for developingitliged applications), platform indepen-
dent, secure (all programs run in their own “sand boxes”).

(c) Goals of Java’s design: platform independence, sgtant dficiency.

(d) Java Virtual Machine: Java is executed in two stages: pilation to byte-code followed by
execution of byte-code. Execution of byte-code is done bintBrpretation, 2) Just-in-Time
compilation, OR 3) direct execution via a Java chip (in PDAY, set-top boxes, and cellular

phones).
(e) Java documentation is located at hitfava.sun.corh At the time of this writing, Java Standard
Ed. 6 was used httffjava.sun.corjavasgé/docgapy.
() Programsin Java:
i. ALL code in Java must be part of a class.
ii. Methods in Java programs are invoked by the objects tleéyriy to, unless they astatic
methods. Static methods can be called with the class’s natha dot before the method.
iii. The first method executed in a Java application isthén. Themain method must be
public to allow Java to call it, it must betatic to allow it to be called without an object,
it must not return anything (beoid), it must be namedain, and it must take a parameter

of a String array, traditionally namextring [Jargs.

iv. Java uses booleans, which are not equivalent to integarsGC++. Thereforewhile (i)

is not valid. Instead usghile (i!=0).
(g) CreatingExecuting a Basic Java Program.

i. Create a file with the same name as the class you intend te.\erg.

Program. java.

234

www.manaraa.com

public class Program {
public static void main (String [Jargs) {

}

System.out.println ("Hello, World!");

Algorithm .148: Simple program

ii. Inthe file, create a class. If the class name matches thgram file name, it can be declared
public. (If it is not declared public, it is “package visible”: vide to everything in that
package (or directory).)

iii. Create a main method. The main method is the startingitpofi Java programs. When
a Java program is executeghfa Program), Program’s main method is starting point of
code execution. The method must be public to allow extemaldation, it must be static
to allow invocation without the creation of an object, it reveturns a value, and it ac-
cepts a String array holding any command-line argumentsprifd a message, use the
java.lang.System.out object'sprintln method. the “In” means that the print will be
followed by a new line. See Algorithm .148.

iv. Compile the programjavac Program. java

v. Execute the programjiava Program The program should print

"Hello, World!" to the screen.

(h) Java Memory Handling

i. All primitive variables — byte (8 bits), short (16 bitsnti(32 bits), long (64 bits), float (32
bits), double (64 bits), boolean (at least a bit), char (1§ ini range 0-65,535) — are stored
in non-dynamic memory.

ii. All objects are in dynamic, heap memory. Declaring aregbyariable merely creates mem-
ory for a “reference” for an object in non-dynamic memory. cfeate an object, use the
keywordnew and call the constructor. e.gew Board (8, 60);

iii. Arrays of any data type are objects. Arrays must be @@asinghew or array initializer lists.
Array access is the same as if03+, but Java arrays also have data attributes specifying

their sizes. e.gint size = intArray.length;

iv. Primitive variables are ALWAY'S passed by value (a copy).

235

www.manaraa.com

v. Objects are ALWAYS passed by reference. To make a copy obgtt, useclone.
vi. Java handles cleaning up dynamically-allocated memiaygarbage collection. Therefore,

programmers never need to free memory that has been aliioicaitebjects.
(i) Java Style Conventions:

i. Packages are named for the reverse internet domain. e.g.
edu.clemson.mypackage. A package is a named collection of classes grouped intea-dir
tory. Afile is declared part of a package with the keywpadkage followed by the package
name and a semicolon. Classes that are not part of a packageawrof the “unnamed
package.”

ii. Class and interface names have capital letters for tselétter of every word in the name.
e.g.MyNewClass.

iii. Method and field names have lowercase first letterspfedld by capitalization of the first
letter of every other word in the name (the so called, “caraskt). e.g.isKingInCheck.
Method names should be verbs and variable names should bs.nou

iv. Local variables follow the same conventions as field nerbet they are typically shorter.
(e.g.buf for buffer,bg for background, etc.) If a variable is used for a very shongtior is
a loop control variable, one-letter names are appropriate:
byte b, char c, double d, Exception e,
float f, int i, int j, int k, String s

v. Parameters: if a parameter’s sole purpose is settingd ftab appropriate to name it the
same thing as the field, fiiérentiating them byhis. e.g.this.width = width;

vi. Constants (“final variables”) are all capital letterglwiinderscores separating the words. e.g.

NUM_SQUARES
()) Java Graphics:

i. The graphic components for the checkehgess game will be from the javax.swing package,
which “provides a set of ‘lightweight’ (all-Java languag®mponents that, to the maximum
degree possible, work the same on all platforms” (Java ARlg Checkechess game will
use JComponents and their child classes.

ii. Painting of colors or images will depend on the java.aatkage, which “contains all of the

classes for creating user interfaces and for painting geaind images” (Java API).

236

www.manaraa.com

iii. Event handling will rely on the java.awt.event packagehich “provides interfaces and

classes for dealing with fierent types of events fired by AWT components” (Java API).

2. Description of necessary graphics components: JFrachdRRanel. The Board will be a JPanel held

by a JFrame.

(a) A frame, implemented as an instance of the JFrame ctaasyindow that typically has decora-
tions such as a border, a title, and buttons for closing aowlifging the window. Applications

with a GUI typically use at least one frame.

(b) A panelis a general-purpose container for lightweigithponents. Our example panel will be
placed on the frame and will hold the checkerboard surfacdik&JFrames, JPanels are double-
buffered by default, and the pixel in the upper, left-hand coffed) is below the border and

therefore visible.

3. ldentification of classes needed (the nouns): Board, Gaoere, Panel, Frame. The JFrame and
JPanel classes are already written for us. The Board cldidsold the colored squares and should fill
the entire JPanel. Each GameSquare class object will bedandunal square on the checkerboard and

should know its location and how to draw itself.
4. Design the GameSquare class
(a) Attributes: row, column, color, and width. Since all #gpiares will be the same size (and square),
width can be &tatic class variable.

(b) Behaviors: draw.

(c) Relationships: Board has GameSquares.
5. Design the Board class

(a) Attributes: width, a list of squares, and a count of thehars of squares across (typically 8 for
American checkers and 10 for international).
(b) Behaviors: creation of squares, invoking draw methodsduares.

(c) Relationships: Board has GameSquares, Board is a JP&imele the board will fill the entire
space of the JPanel and should control how the JPanel is dBwmard will extend the JPanel

class. Although Board could inherit from JFrame (insteadRdnel) and perform all drawing

237

www.manaraa.com

needed by overriding the JFrame paint method, JFrame ddgserform double bffering and
has dfset problems not presentin JPanel. JPanel uses doutdedyand 0, 0 is the first draw-able

location in the upper left-hand corner. Thus, the JFramkheill a Board which is a JPanel.
6. Discussion of the Color class.

(a) The color class has public static Color objects of mapicgl colors.

(b) If you want to specify a color, use a constructor to spettié rgb values.
7. Discussion of how a Board can be a JPanel: inheritance.

(a) Inheritance is an extension relationship between tasses. The subclass extends (i.e. is a child

of) the superclass.

(b) Inheritance models the “is-a” relationship. e.g. If ti@ss “Student” extends “Person,” Student

is a Person. Student is a specialization of the general Petass.
(c) The sub class receives all of the public ardtected behaviors and attributes.

(d) The sub class can add its own behaviors and attributegelbas “override” the behaviors (meth-
ods) of the super class. A method in a super class is overridgéhe sub class if the subclass
has a method with the identical signature and return typth(diifferent functionality). e.g., if
the Person class hazaString () method that returns the String “Person”, Student may write a

methodtoString() to instead return the String “Student.”

(e) Every class implicitly extends the superclass Object.

8. Create the GameSquare class. The attributes are a Cator, @ column, and a static width. The
constructor should initialize the instance variables, arstatic method can set the width. Instance
variables and class variables are usually private. Seeritthgo .149. The behavior the GameSquare
needs to implement is the ability to draw itself. The squardrawn as a rectangle filled with the
specified color with equal sides that starts at the apprteprav and column, which are based on
the width of each square. This drawing with be done by mearss®@faphics2D object that will be
passed to GameSquare’s draw method. “This Graphics2D eXxisads the Graphics class to provide
more sophisticated control over geometry, coordinatesfaamations, color management, and text
layout. This is the fundamental class for rendering 2-disi@mal shapes, text and images on the

JavdMplatform” (Java API http/java.sun.corfjavas¢6/docgapi). The Graphics class has a method

238

www.manaraa.com

import java.awt.*; // for Color and Graphics2D

public class GameSquare {
private Color bgcolor;
private int row, col;
private static int width;

public GameSquare (Color bgcolor, int row, int col) {
this.bgcolor = bgcolor;
this.row = row;
this.col = col;

}

public static void setWidth (int width) {
GameSquare.width = width;

}

Algorithm .149: Beginning of the GameSquare class

public void draw (Graphics2D g) {
g.setPaint(bgcolor);
g.fillRect(col*width, row*width, width, width);

Algorithm .150: Draw method for creating the square in the appropriate imcat

fillRect that creates a solid-colored rectangle starting at thefggpetocation that is the given width
and height. The color of the rectangle must be set first vidGtaphics2D’'ssetPaint method. See

Algorithm .150.
9. Create the Board class.

(a) Make the Board extend JPanel.

(b) Create all the instance and class variables the Boasd nkzeds: width of each square, the number
of squares across the board, and a two-dimensional arréye &uares. As usual, the fields are
private. The number of squares across will not change dunegution and can therefore be a
constant. Constants in Java are specified by the keywirdl. Additionally, since the value is

the same for any instance of the board, the number of squanesiso be static.

(c) Create a method to initialize the squares. This methddeiinvoked by the Board constructor

and can therefore be private. It will handle creating therobf the squares (a light and a dark),

239

www.manaraa.com

creating each square, and storing its reference in an 8nageGameSquare. setWidthis static,

it can be invoked using the class name.

To create each of the 64 squares, there must be two nestebfis that get their values from the
size of the array using length. Since it is a two-dimensi@medy,length stores the number of
rows. To determine the number of columns per row, useltingth variable of any individual
row. e.g.squares[0] .length.

Since the board is checkered, the colors must alternateck€hirg may be achieved by deter-
mining whether the sum of the row number and column numberens er odd. The color of the

square is light for even sums and dark for odd.
(d) Create the Board constructor to initialize its variad@d create the JFrame object that will hold
this Board. The JFrame with and height can be computed up. fB@e Algorithm .151.

(e) Set the JFrame’s default close operation to exit. THingemeans that when a user closes the
JFrame, the application exists.

() Invoke thebuildGameSquares method to create the GameSquare objects.

(9) Add this Board to the frame and make the frame visible.

(h) Overwrite JPanel’s paint method to call each GameSdaudraw method in a loop using the
passed in Graphics object. The draw method in the GameSqlaasemust have Graphics2D
object passed to it, but the paint method is passerhahics object. Fortunately, the passed-in
object is truly aGraphics2D object and can be cast appropriately.

JPanel (and thus Board) inhenitsint from JComponent. The paint method is invoked by Swing
to draw components. As noted in the Java API, “applicatitwasikl not invoke paint directly, but
should instead use the repaint method to schedule the campiam redrawing.” Since the JPanel
class already has a paint method that renders the JPandbpwvefrthe JFrame, its paint method
should be invoked first before the Board’s modifications aneed To call a parent class’s method

in Java, use the keywordiper.

(i) Create the main method to create the Board object. Seeritthgn .151 and Figure 41.

D.6.6 Phase 2

Phase two is the creation of a GUI-based checkerboard setctigrwith colored, filled circles.

Required material: Graphics2D drawing tools

240

www.manaraa.com

import javax.swing.*; // For the JFrame and JPanel classes

public class CheckerBoard extends JPanel {
private int squareWidth = 60;
private static final int NUM_ACROSS = 8;
private GameSquare squares[][];

private void buildGameSquares() {

3

Color dark = new Color (21, 106, 89);
Color light = new Color (255, 255, 213);
squares = new GameSquare [NUM_ACROSS][NUM_ACROSS];
GameSquare.setWidth (squareWidth);
for (int i = 0; i < squares.length; ++i) {
for (int j = 0; j < squares[i].length; ++j) {
if ((i+j)%2 == 0) {
squares[i][j] = new GameSquare(light, i, j);
} else {
squares[i][j] = new GameSquare(dark, i, j);

}

}

public CheckerBoard () {

}

int width = squareWidth*NUM_ACROSS;

int height = squareWidth*NUM_ACROSS;

JFrame frame = new JFrame("Checkers");

frame.setSize (width, height);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
buildGameSquares();

frame.add(this);

frame.setVisible(true);

public void paint(Graphics g) {

}

super.paint(g);
for (int i = 0; i < squares.length; ++i) {
for (int j = 0; j < squares[i].length; ++j) {
squares[i][j].draw((Graphics2D)g);
}
}

public static void main (String []Jargs) {

}

new CheckerBoard();

Algorithm .151: CheckerBoard class

241

www.manaraa.com

Checkers

Figure 41: Checkerboard

1. Identification of new classes needed: Piece and Checkérsckers will be in charge of placing the

pieces on the board. In the future, Checkers will also haddJfframe containing the board.
2. Design of the Piece class:

(a) Attributes: color, row, columrgtatic width, static square width.
(b) Behaviors: draw, setup and accessor methods.

(c) Relationships: GameSquare has a Piece.
3. Design of the checkers class:

(a) Attributes: Board, (width, number of squares per side).
(b) Behaviors: initialization, setup pieces.

(c) Relationships: Checkers has a Board.
4. Updated design of the GameSquare class:

(a) New Attributes: Piece.

242

www.manharaa.com

import java.awt.*;

public class Piece {
private Color color;
private int row, col;
private static int squareWidth, width;

public Piece (Color color) {
this.color = color;
row = -1;
col = -1;
}
public Piece (Color color, int row, int col) {
this.color = color;
this.row = row;
this.col = col;
}
public void setLocation (int row, int col) {
this.row = row;
this.col = col;
}
public static void setSquareWidth (int sqWidth) {
squareWidth = sqWidth;
width = (int) (squareWidth * 0.8f);

Algorithm .152: Piece class instance variables and accassaator methods

(b) New Behaviors: Accessing, drawing, and updating Piece.

(c) New Relationships: GameSquare has a Piece.
5. Updated design of the Board class:

(a) New Behaviors: Placing a Piece at a specified location.

(b) New Relationships: Checkers has a Board.
6. Create the Piece class.

(a) Declare all needed attributes, constructors, andefahethods. The diameter of the piece is 80%

of the square’s width. See Algorithm .152.

(b) Create a draw method to generate the graphical repegganbdf the piece. Call the Graphics

object’s fillOval method to draw a filled, colored circle cergd on the piece’s location with a

243

www.manaraa.com

public void draw (Graphics2D g) {
int left = (int)(col*squareWidth + squareWidth*0.1f);
int top = (int)(row*squareWidth + squareWidth*0.1f);
g.setPaint(color);
g.fillOval (left, top, width, width);

Algorithm .153: Piece’s draw method

width 80% of the square. The diameter of the piece is alreatl{os80% in thewidth variable.

Drawing of the circle must begin 10See Algorithm .153.

7. Update the GameSquare class to hold a reference to thedtighat GameSquare, allow access to the
Piece, draw it whenever the GameSquare object is drawn, pdate the Piece width whenever the

GameSquare width changes. See Algorithm .154.
8. Create a method in Board to allow a piece to be placed orem @ameSquare, as in Algorithm .155.

9. Update the Board constructor to accept as parameterslileswof the square width and the number of
squares across. Since checkers will now be responsibledaticg the Board, checkers should be able

to set such values. See Algorithm .156.

10. Define the checkers class to create the Board with sqobties appropriate width and number across
and to place the pieces on the Board. The colors of the piegeeslightly darkened red and white.
Later, when the pieces are made to have a three-dimensiop@heance, they cannot be as bright as

full red and white. See Algorithm .157.

The setOutPieces method will place twelve dark and twelve light pieces on gwther square of

the board (i.e. the dark squares). The light pieces are otothiaree rows, and the dark pieces are on
the bottom three rows. The newly created pieces will be placethe board at the specified row and
column using the Board’'setPiece method. After all the pieces are placed, the Board needs to be
redrawn to reflect the added pieces. Sinceptiient method cannot be called directly, we instead call

therepaint () method to schedule a call fmint. See Algorithm .158.

Create a main in the Checkers class to create the Checkext.oBge Algorithm .159 and Figure 42.

244

www.manaraa.com

// in GameSquare. java
import java.awt.¥;

public class GameSquare {
private Color bgcolor;
private int row, col;
private Piece piece;
private static int width;

public GameSquare (Color bgcolor, int row, int col) {
this.bgcolor = bgcolor;
this.row = row;
this.col = col;
piece = null;
}
public void setPiece (Piece piece) {
this.piece = piece;
if (piece != null) piece.setlLocation (row, col);
}
public Piece getPiece () {
return piece;
}
public void draw (Graphics2D g) {
g.setPaint(bgcolor);
g.fillRect (col*width, row*width, width, width);
if (piece != null) {
piece.draw (g);
}
}
public static void setWidth (int width) {
GameSquare.width = width;
Piece.setSquareWidth (width);

Algorithm .154: Square class

// in CheckerBoard. java
public void setPiece (int row, int col, Piece piece) {
squares[row][col].setPiece(piece);

}

Algorithm .155: CheckerBoard Piece placement method

245

www.manaraa.com

public class CheckerBoard extends JPanel {
private int squareWidth;
private int numAcross;
private GameSquare squares[][];

public CheckerBoard (int squareWidth, int numAcross) {
this.squareWidth = squareWidth;
this.numAcross = numAcross;
int width = squareWidth*numAcross;
int height = squareWidth*numAcross;

JFrame frame = new JFrame("Checkers");

frame.setSize (width, height);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
buildGameSquares();

frame.add(this);

frame.setVisible(true);

Algorithm .156: Updated CheckerBoard constructor

import java.awt.Color;

public class Checkers {
private CheckerBoard board;
private int squareWidth=60;
private int numAcross=8;

public Checkers() {

board = new CheckerBoard(squareWidth, numAcross);
setOutPieces(new Color (230,230,230), new Color(210,0,0));

Algorithm .157: Beginning of Checkers class

246

www.manaraa.com

private void setOutPieces (Color light, Color dark) {
for (int row=0; row < 3; ++row) {
for (int col=(row+1)%2,int cnt=0;cnt <4; col+=2,++cnt){
board.setPiece (i, j, new Piece (light));
}
}
for (int row=5; row < 8; ++row) {
for (int col=(row+1)%2,int cnt=0;cnt <4; col+=2,++cnt){
board.setPiece (i, j, new Piece (dark));
}
}

board.repaint () ;

Algorithm .158: Piece placement method

public static void main (String [Jargs) {
Checkers checkers = new Checkers(Q);

}

Algorithm .159: Checkers class instantiation

Checkers

Figure 42: Checkerboard with immobile pieces

247

www.manaraa.com

public void draw (Graphics2D g) {
int left = (int)(col*squareWidth + squareWidth*0.1f);
int top = (int)(row*squareWidth + squareWidth*0.1f);
int innerLeft = (int)(left + squareWidth * 0.1f);
int innerTop = (int) (top + squareWidth * 0.1f);

g.setPaint(color);
g.fillOval (left, top, width, width);
Algorithm .160: Beginning of the Piece class draw method
g.setPaint(Color.black);
g.drawOval (innerLeft, innerTop, (int) (squareWidth*.6),
(int) (squareWidth*.6));
}
Algorithm .161: End of draw method
D.6.7 Phase3

Phase three is the creation of a GUI-based checkerboardsetcty with smooth, 3D-looking

pieces. Required knowledge: Concept of anti-aliasing]igra paint tool

1. Update the Piece class’s draw method to draw a smallekehiing over top of the filled circle.

(a) Determine the starting point for the inner ring’s leftianp, as in Algorithm .160.

(b)

(©

(d)

Change the color and draw an oval starting at the spedaifiextLeft and innerTop that is 60% the

width of the square. See Algorithm .161 and Figure 43.

The checkers still look fake. Instead of a thin, blackgrimake a slightly thicker ring with
shading from dark to light, giving the checker the appeagaftaving an inset groove. To do
this, we must make an object of tkeadientPaint class that shades diagonally from a dark
version of the checker’s color to a light version of the clexskcolor. GradientPaint needs to
know the starting location of the gradient, the ending lmegtand the two colors to use for the
gradient. We already have the starting point: innerLeftimmnérTop. The other point is similar.

See Algorithm .162.

Once the filled circle is drawn, create the GradientPaliect and set it to be the current paint.
The dark color and the light color for the gradient will be qmuted by Color’s built-irdarker ()
andbrighter () methods. See Algorithm .163.

248

www.manaraa.com

Checkers |Z| |E| f5__<|

Figure 43: Checkerboard with inner circle

public void draw (Graphics2D g) {
int left = (int) (col*squareWidth + squareWidth*0.1f);
int top = (int)(row*squareWidth + squareWidth*0.1f);
int innerLeft = (int)(left + squareWidth * 0.1f);
int innerTop = (int) (top + squareWidth * 0.1f);
int innerRight =(int) ((col+1)*squareWidth-squareWidth*0.3f);
int innerBottom=(int) ((row+1)*squareWidth-squareWidth*0.3f);

g.setPaint(color);
g.fillOval (left, top, width, width);

Algorithm .162: Beginning of updated draw method

GradientPaint shade = new GradientPaint(innerLeft, innerTop,
color.darker (), innerRight, innerBottom, color.brighter());
g.setPaint(shade);

Algorithm .163: Gradient Paint

249

www.manaraa.com

g.setStroke(new BasicStroke(2.0£f));
g.drawOval (innerLeft, innerTop, (int) (squareWidth*.6),
(int) (squareWidth*.6));

Algorithm .164: Creation of inset circle

Checkers

Figure 44: Checkerboard with 3D pieces

(e) Use thesetStroke method to thicken the stroke and finally draw the ring. SeeAtgm .164
and Figure 44.

(f) The Graphics2D object'sddRenderingHints method lets users turn on anti-aliasing to smooth

the pieces. The call can be made in the Board class’s paihtodeFirst, create thkenderingHints

object to be used. See Algorithm .165 and Figure 45.

D.6.8 Phase 4

Phase four is the creation of a GUI-based checkerboard Hoatsapieces to be dragged to any

square. Required knowledge: Mouse events.

250

www.manaraa.com

// in CheckerBoard. java

public class CheckerBoard extends JPanel {
private int squareWidth;
private int numAcross;
private GameSquare squares[][];

public CheckerBoard (int squareWidth, int numAcross) {
this.squareWidth = squareWidth;

this.numAcross = numAcross;

int width = squareWidth*numAcross;

int height = squareWidth*numAcross;

RenderingHints hints = new RenderingHints(
RenderingHints.KEY_ANTIALTIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

JFrame frame = new JFrame("Checkers");

frame.setSize (width, height);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

buildGameSquares();

frame.add(this);

frame.setVisible(true);

Algorithm .165: Addition of anti-aliasing

Checkers |Z| |E| b__<|

Figure 45: Checkerboard with 3D, anti-aliased pieces

251

www.manaraa.com

// In CheckerBoard. java
public int numAcross() {
return numAcross;

}

Algorithm .166: Number across accessor method

=

. ldentification of new classes needed: a MouseAdapter. MbigseAdapter class already exists in
the java.awt.event. We need to override its behaviors and will therefore creathild class of

MouseAdapter.
2. MouseAdapter Child Class Design

(a) Behaviors: mouse button press, drag, and release.

(b) Relationship: child of MouseAdapter, (inner class oeCkerBoard).
3. Piece Design Update

(a) New Behaviors: make play, draw at a given X,Y location.
4. Board Design Update

(a) New Attributes: mouse x and y location, currently movpigce, and access to the number of

squares across (for bounds checking).
(b) New Behaviors: creation of mouse listeners, drawinguofently moving piece.

(c) New Relationships: contains the MouseAdapter childsla

5. Update Board to allow access to the number of square affoydsounds checking), as in Algorithm

.166.

6. Create a new Piece draw method that centers the piece givére(mouse) location. See Algorithm

.167.

7. Update Piece'draw (Graphics2D) method to invoke the nedraw (Graphics2D, int, int)in

order to reduce redundant code. See Algorithm .168.

8. Create a method in the Piece class for performing movesaunser has indicated (via dragging) where

the piece is to go. In order to perform moves, the method mast the new location of the Piece and

252

www.manaraa.com

public void draw (Graphics2D g, int x, int y) {

int left = (int)(x - squareWidth*0.4f);
int top (int) (y - squareWidth*0.4f);

int innerLeft = (int)(left + squareWidth * 0.1f);
int innerTop = (int) (top + squareWidth * 0.1f);
int innerRight = (int)(x + squareWidth*2.0f);

int innerBottom = (int)(y + squareWidth*2.0f);

g.setPaint(color);

g.fillOval (left, top, width, width);

GradientPaint shade = new GradientPaint(innerLeft, innerTop,

color.darker (), innerRight, innerBottom, color.brighter());

g.setPaint(shade);

g.setStroke(new BasicStroke(2.0f));

g.drawOval (innerLeft, innerTop, (int) (squareWidth*.6),
(int) (squareWidth*.6));

Algorithm .167: Piece draw method with center location specified

public void draw (Graphics2D g) {

int x = col*squareWidth + squareWidth/2;
int y = row*squareWidth + squareWidth/2;
draw (g, x, y);

Algorithm .168: Simplified Piece draw method

253

www.manaraa.com

public boolean makePlay(int endRow,int endCol,CheckerBoard b){
if (endRow < 0 || endRow >= b.numAcross() ||
endCol < ® || endCol >= b.numAcross())
return false;
b.setPiece(endRow, endCol, this);

Algorithm .169: Piece play method

public class CheckerBoard extends JPanel {
private int squareWidth;
private int numAcross;
private GameSquare squares[][];
private int mouseX, mouseY;
private Piece mover;
private RenderingHints hints;

Algorithm .170: Addition of reference to moving piece

access to the Board in order to notify its newly-occupiedasgquabout the move and make sure the

move is not outside the Board’s boundaries. See Algoritté8..1

9. Update Board to have a variable for the Piece being draggddhe current mouse location. See

Algorithm .170.

10. Update Board'’s paint method to draw the piece being m@fady) at the current mouse coordinates.

See Algorithm .171.

11. Create the MouseAdapter child class to handle mousdsv&éhe MouseAdapter can be the Board

(if it implementsMouseListener), an anonymous class, or a nested class inside the Boasd S8as

public void paint(Graphics g) {
super.paint(g);
((Graphics2D)g) .addRenderingHints(hints);
for (int i = 0; i < squares.length; ++i) {
for (int j = 0; j < squares[i].length; ++j) {
squares[i][j].draw((Graphics2D)g);
}
}

if (mover!=null)mover.draw((Graphics2D)g, mouseX, mouseY);

Algorithm .171: Updated CheckerBoard’s paint method

254

www.manaraa.com

// In CheckerBoard.java in the CheckerBoard class
class PlayListener extends MouseAdapter {

Algorithm .172: Extension of the MouseAdapter

public void mousePressed(MouseEvent e) {
if (mover == null) {
int col = (int)(e.getX()/squareWidth);
int row = (int) (e.getY()/squareWidth);
mover = squares[row][col].getPiece();

if (mover != null) {
squares[row][col].setPiece(null);
} else {

mover = null;
}
}
mouseX = e.getX(Q);
mouseY = e.getY(Q);
repaint();

Algorithm .173: Mouse pressed event

Algorithm .172. The three events involved with moving a pi¢z a new location are

public void mousePressed (MouseEvent e),

public void mouseDragged (MouseEvent e), and

public void mouseReleased (MouseEvent e). When the mouse is pressed, the piece in the
square the mouse is over should be removed and become ‘&dtgotthe cursor. To attach the piece to
the cursor, set Board’s “mover” variable to be a referentkégiece being moved and track the current
mouse coordinates. The piece will be drawn centered on ttas&linates in Board’s paint method.
After the changes are made, the Board must be repainted ¢otréfe changes. See Algorithm .173.
When the mouse is dragged, a mouse button is being depresdedive mouse moves. If there is a
piece that is currently the “mover,” each time the mouseégded, the piece should be redrawn at the

new mouse coordinates. See Algorithm .174.

When the mouse button is released, if there was a piece beiagdnit should be set down on the new
square. If the new square is outside of the checkerboargjelce should jump back to its old position.

(“mover” is still storing its old position.) See Algorithrii 75.

12. Update the Board class to create and add the MouseAdeptiee MouseListener and the MouseMo-

255

www.manaraa.com

public void mouseDragged(MouseEvent e) {
if (mover != null) {
mouseX = e.getX(Q);
mouseY = e.getY(Q);
repaint () ;

Algorithm .174: Mouse dragged event

public void mouseReleased (MouseEvent e) {
if (mover != null) {

int col (int) (e.getX()/squareWidth);

int row = (int)(e.getY()/squareWidth);

if (mover.makePlay(row, col, CheckerBoard.this)) {

mover = null;

} else {
// play invalid; undo
squares[mover.getRow ()]

[mover.getCol()].setPiece(mover);

mover = null;

}
}
repaint();
}
} // end MouseAdapter child class
} // end CheckerBoard outer class

Algorithm .175: Mouse released method

256

www.manharaa.com

public CheckerBoard (int squareWidth, int numAcross) {
this.squareWidth = squareWidth;
this.numAcross = numAcross;
int width = squareWidth*numAcross;
int height = squareWidth*numAcross;
hints = new RenderingHints(RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);

JFrame frame = new JFrame("Checkers");
frame.setSize (width, height);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
buildGameSquares();
frame.add(this);
frame.setVisible (true);

PlayListener listener = new PlayListener();

addMouselListener(listener);
addMouseMotionListener (listener);

Algorithm .176: Addition of listener

tionListener. Mouse events involving motion (drag and merast handled by MouseMotionListeners.
Other mouse events (press, release, click (a combinatipnesé and release), etc.) must be handled
by MouselListeners. The Board JPanel must add action list¢adandle these events. Obviously, the
listener will be the MouseAdapter child class that was justten (in our example, “PlayListener”).

See Algorithm .176.

D.6.9 Phaseb5

Phase five is the creation of a GUI-based checkerboard thatsabieces to be moved to valid move

locations (diagonally forward). Turns do not matter yet.

1. Identification of new classes needed: Player. The Pldges avill keep track of the color and direction
of its pieces. Piece no longer needs to track its color buy @alPlayer. Later on, Player will be
responsibly for taking turns, identifying when the game hasn completed, sending plays over the

network, etc.
2. Player Design

(a) Attributes: color and direction
(b) Behaviors: initialization and data access

257

www.manaraa.com

import java.awt.Color;

public class Player {
private boolean goingDown;
private Color color;

public Player (Color color, boolean goingDown) {
this.color = color;
this.goingDown = goingDown;
}
public Color getColor() {
return color;
}
public boolean goingDown() {
return goingDown;

}

Algorithm .177: Player class

(c) Relationships: Piece has a Player
3. Piece Design Update

(a) New Attributes: Player replaces Color
(b) New Behaviors: move validation

(c) New Relationships: Piece has a Player
4. Checkers Design Update

(a) New Behaviors: Creation of two Players

(b) New Relationships: Checkers uses two Players
5. Board Design Update
(&) New Behaviors: Allow access to Pieces on the Board.

6. Create Player class. The attributes needed are a cola dindction. The directions the pieces move
on the board are up and down. Since there are only two vallege® direction can be tracked by a
boolean. The only behaviors Player currently needs to paréoe initialization and instance variable

access. See Algorithm .177.

258

www.manaraa.com

pub

lic class Piece {

private int row, col;

private Player player;

private static int width, squareWidth;

public Piece (Player player) {
this.player = player;
row = -1;
col = -1;
}
public Piece (Player player, int row, int col) {
this.player = player;
this.row = row;
this.col = col;

Algorithm .178: Addition of a Player to the Piece class

//

in Piece. java
public Color getColor () {
return player.getColor();

}

Algorithm .179: Updated color accessor method

. Add a Player instance variable to Piece and remove Coldditidnally, update the constructors to

accept a Player instead of a Color. See Algorithm .178.

Add agetColor () method to Piece to simplify getting the color from Playerire8lgorithm .179.
. Update the Piece class to use Player instead of Color &owvidg itself. See Algorithm .180.

. Update Piece to validate attempted moves. A move (not p)jiswalid if it is to an empty, valid square
diagonally one square forward, where the forward is thectiva dictated by the Piece’s Player. Valid
moves have a row change of 1 in the direction of play and a colcimange of 1 or -1. See Algorithm

.181.

10. Update PiecemakePlay to call isMove before allowing a move. See Algorithm .182.

11.

12.

Update checkers to create two players and pass thempajaedy to the pieces. See Algorithm .183.

Add a method to the Piece class to accept an attemptedplaiyrm its validity, and perform the move

(or take it back).

259

www.manaraa.com

public void draw (Graphics2D g, int x, int y) {
int left = (int)(x - squareWidth*0.4f);
int top (int) (y - squareWidth*0.4f);

int innerLeft = (int)(left + squareWidth * 0.1f);
int innerTop = (int) (top + squareWidth * 0.1f);
int innerRight = (int)(x + squareWidth*2.0f);

int innerBottom = (int)(y + squareWidth*2.0f);

g.setPaint(getColor());

g.fillOval (left, top, width, width);

GradientPaint shade = new GradientPaint(innerLeft, innerTop,
getColor() .darker (), innerRight, innerBottom,
getColor() .brighter());

g.setPaint(shade);

g.setStroke(new BasicStroke(2.0£f));

g.drawOval (innerLeft, innerTop, (int) (squareWidth*.6),

(int) (squareWidth*.6));

Algorithm .180: Updated Piece draw method

// 1in Piece. java
private boolean isMove (int endRow, int endCol, CheckerBoard b) {

if (b.getPiece(endRow, endCol) != null) {
return false;
} else {
int dir = player.goingDown()? 1 : -1;
return (row+1*dir == endRow && (col+l==endCol || col-1==endCol)
)
}

Algorithm .181: Move validation

// 1in Piece. java
public boolean makePlay (int endRow, int endCol, CheckerBoard b) {
if (isMove (endRow, endCol, b)) {
b.setPiece(endRow, endCol, this);
return true;
} else {
return false;

}

Algorithm .182: Piece’s make play move with validation

260

www.manaraa.com

// in Checkers. java
private void setOutPieces (Color light, Color dark) {
int numLight = 12, numDark = 12;
Player top = new Player (light, true);
Player bottom = new Player (dark, false);
for (int row=0; row < 3; ++row) f{
for(int col=(row+1)%2, int cnt=0;cnt <4;col+=2,++cnt){
board.setPiece (i, j, new Piece (top));
}
}
for (int row=5; row < 8; ++row) {
for(int col=(row+1)%2,int cnt=0;cnt <4;col+=2,++cnt){
board.setPiece (i, j, new Piece (bottom));
}
}

board.repaint ();

Algorithm .183: Piece placement with associated players

13. Add a MouseAdapter object to the CheckerBoard as the #astener and MouseMotionListener.

14. Write the MouseAdapter's mousePressed method to rethewselected piece from the square, set the

CheckerBoard moving piece as the piece from that locatiod,uppdate the mouse coordinates (and

repaint).
15. Write the mouseDragged event to update the mouse catediand repaint.
16. Write the mouseReleased method to calls the Piece’'smpédliod and clear the moved piece being

stored in the CheckerBoard object.

D.6.10 Phase 6

Phase six is the creation of a GUI-based checkers game thasgbieces to be moved or single-

jumped legally. Turns do not matter yet. No new knowledgeeisded.

1. Identification of new classes needed: none.
2. Steps to allow single jumps:

(a) Inthe Piece class, add handling for validating a jump. (s the target location 2 diagonal spaces

forward, over an opponent’s piece?)

261

www.manaraa.com

(b) Inthe Piece class, add handling for performing the jun(ips. Place the piece in the new location,

and remove the jumped piece.)

D.6.11 Phase 7

Phase seven is the creation of a GUI-based checkers ganadlthved pieces to be moved, singly-
jumped, and crowns pieces that reach the last rows. Turnstdoaiter yet. Required knowledge: A way to

draw stars on pieces.
1. Identification of new classes needed: King.
2. ldentification of King’s attributes: none but inheritetributes.
3. ldentification of King’s behaviors: initialization andaiving.

4. Identification of King's relationship: King is a Piece.

ol

. Steps to allow crowning:

(a) In the King class, use the GeneralPath class to draw astlre king pieces. An example of
drawing a star is in the online Java documentation

(httpy/java.sun.cori2sgl.3docgguidg2d/spegj2d-awt.fm4.html).

(b) In the appropriate class, add handling for checking mret Piece has reached the end of the

board, and should be replaced by a King with its identicailattes.

D.6.12 Phase 8

Phase eight is the creation of a GUI-based checkers gamalltnat pieces to be moved, singly-

jumped, crowned, and allows king plays. Turns do not maérpo new knowledge is needed.
1. Identification of new classes needed: none.

2. Steps to allow king plays: in the King class, override ttag/walidations from the Piece class to allow

plays in both directions.

262

www.manaraa.com

D.6.13 Phase 9

Phase nine is the creation of a GUI-based checkers gamdltivas pieces and kings to be moved,
jumped, crowned, and requires multiple jumps to be comglefeirns do not matter yet. Required knowl-

edge: Mouse moved event.

1. ldentification of new classes needed: none.
2. Steps to require multiple jump completion:

(a) Create methods in Piece and King to determine if a givenging can jump.

(b) In CheckerBoard class, after a jump, check if the Piegeablcan jump again. If it can, do not

allow the piece to be put down until it can no longer jump.

(c) In the MouselnputAdapter class, add handling for mousedd events for when a piece cannot

be put down until the play is complete.

D.6.14 Phase 10

Phase ten is the creation of a GUI-based checkers game linas gdieces and kings to be moved,
jumped, crowned, and requires sides to take turns. The toayse enforced using threads, as in an example

in Chapter 10 of the suggested textbook. Required knowtediggonally threads.

1. Identification of new classes needed: none.
2. Steps to allow taking turns:

(a) Inthe Player class,
i. Add a boolean indicating the Player’s turn, as well asesponding géset methods.
ii. Add a variable to hold a reference to the other player.

iii. When the Player’s turn is complete, set the turn for tkieeo player.

(b) Inthe PiecgKing class, add a method to determine whether a piece istablec (e.g. if it is this

Piece’s Player’s turn, it can be selected).
(c) Inthe CheckerBoard class, do not allow a piece to be walamless the Piece is selectable.

(d) In the Piecg&ing class, appropriately end the Player’s turn. A Playaris is done when any
of the following occurs: a piece is moved, a piece is crowied, jumping piece can no longer

jump.

263

www.manaraa.com

D.6.15 Phase 11

Phase eleven is the creation of a GUI-based checkers gatadithes pieces and kings to be moved,
jumped, and crowned, requires turns, and displays curtenst Required knowledge: Layout managers,

labels.
1. ldentification of new classes needed: none.
2. Steps to allow displaying turns:

(a) Add a message bar (likely a JLabel) to display whose tuis1 i(Likely in the Checkers class,
along with the initialization of the JFrame.)
(b) Add methods to set the the message bar to whose turn it is.

(c) Inthe Player class, add a String name (e.g. the playelids)dfor display.

(d) When the Player’s turn is begun, set the message bardlagisis turn, via an object of the class

holding the message bar.

D.6.16 Phase 12

Phase twelve is the creation of a GUI-based checkers ganralihas pieces and kings to be moved,
jumped, and crowned, requires turns, displays currenstamd requires jumps whenever they are available.

No new knowledge is needed.
1. Identification of new classes needed: none.
2. Steps to allow forcing jumps when available:

(a) Inthe Player class, add a method to determine whetheofahg Player’s pieces can jump. (All

the pieces are located on the CheckerBoard.)
(b) Atthe beginning of each turn, determine whether the &lagn jump and store the result.

(c) Inthe Piece class, do not allow a move to be completeiftlayer can jump.

D.6.17 Phase 13

Phase thirteen is a fully-functional, GUI-based checkarsg allowing only valid plays, requiring

turns, and displaying the winner when the game is compl&®eduired knowledge: Game lost algorithm.

264

www.manaraa.com

1. Identification of new classes needed: none.
2. Steps to allow displaying the winner:

(a) In the Player class, add a method to determine whetheofatlye Player’s pieces can move or

jump. If a Player cannot perform a play, he has lost the game.

(b) If no pieces can move or jump, display that this Playetrdosl the other won.

D.6.18 Phase 14

Phase fourteen is a fully-functional, GUI-based checkaragwith double-bfiered graphics. Re-

quired knowledge: Double Ifiiering.
1. Identification of new classes needed: none.
2. Steps allow double Iftering. In the CheckerBoard class,

(a) Declare an Image instance variable to hold tfisopeen drawing.
(b) Initialize the new Image object to be the current sizehef€heckerBoard.

(c) Inthe paint method, perform all paintiftgawing on the Image object’s

Graphics {mage.getGraphics()).

(d) In the paint method, draw the image onto the passed-ipitica object. (e.g.g.drawImage

(image, 0, 0, this);)

D.6.19 Phase 15

Phase fifteen is a fully-functional, doubleffered, GUI-based checkers game that allows resizing.

Required knowledge: Component listeners.
1. Identification of new classes needed: a new Componentadap
2. ldentification of the new ComponentAdapter’s attributesne.

3. Identification of the new ComponentAdapter’s behaviov&rride the componentResized event method.

N

. ldentification of the new ComponentAdapter’s relatidpstan extension of the ComponentAdapter

class, inner class of CheckerBoard.

265

www.manaraa.com

5. Steps to allow resizing:

(a) Make sure the Piece classes and GameSquare class himvesthods for setting their widths.

(b) In componentResized method, get the smaller of the neveions. The dimensions can be
obtained from the Component’s providgetSize () method.

(e.g.Board.this.getSize() or simplygetSize().)
(c) Reset the size on the doubleflau-related Image object.

(d) Set the width for the Piece and GameSquare classes.

D.6.20 Phase 16

Phase sixteen is a fully-functional, doubleffawed, re-sizable, networked, GUI-based checkers

game. Required knowledge: Exceptions, Sockets, Java IO.
1. Exceptions

(a) Description
i. Exceptions change the flow of control when something uretqdl (such as an error) has
occurred. Java exceptions are adapted fram C
ii. Inthe past (such as in C), error conditions were typicailicated by returned error codes.
However, since programmers often forget to handle thedelgmts, exceptions force some
sort of handling or end the program. Thus, exceptions emgmuprogrammers to take error
conditions seriously.
(b) Handling Exceptions
i. An Exception is triggered by a “throw” statement. ethrow new Exception();

ii. If a method can throw an exception (that is not a “Runtime&ption”), it must be declared

in the method head, e.gublic void method () throws Exception {}

iii. If a method handles all possible (non-runtime) exceps, it does not need the throws state-

ment.

iv. To handle an exception, you must “catch” it. If a methodigall can trigger an exception,

and you wish to handle it, you must put it in a “try-catch” btpe.g. Algorithm .184.

266

www.manaraa.com

try {
methodWithPossibleException();

} catch (PossibleException e) {
// handle exception. e.g.
System.err.println (e);

Algorithm .184: Sample exception handling

v. RuntimeExceptions are exceptions typically thrown by dava runtime library code. Run-
timeExceptions are often considered “unrecoverable.”aBse of their (typically) unrecov-

erable status, you are not required to handle RuntimeExrept

vi. As is the case with all exceptions, unhandled Runtimefptions crash the program. You

can catch RuntimeExceptions if you wish.
(c) Inorder to do networking and multi-threading, you mustble to handle exceptions.
(d) Additionally, in NetPlayer, if the input from the netwkois not in line with the specifications, a
user-defined Exception should be thrown.

2. Network play

(a) ldentification of new classes needed: a network player.

(b) Identification of NetPlayer’s attributes: a port, a waysend to server, a way to receive from

server, knowledge of whether to go first.
(c) Identification of NetPlayer's behaviors: cligsgrver setup, override setTurn, and others.
(d) Identification of NetPlayer’s relationship: NetPlayera Player.
(e) Steps to allow network play:

i. Inthe Checkers class,

A. Optionally accept a server name from the command line.

B. If a server name was accepted, this session is the actigngt.clSet the NetPlayer to
move first with the dark-colored pieces. Otherwise, thellBtayer moves first and has
the dark-colored pieces.

C. Set the pieces of the local player to be at the bottom of¢hees and the NetPlayer to

be at the top.

267

www.manaraa.com

ii. Inthe Player class,
A. Create a method for notifying the other player of the camates of a move or part of a
jump.
B. Create a method for accepting mguenp coordinates (from another player).
ii. Inthe NetPlayer class,

A. Create a constructor for setting up the NetPlayer as atcliehis constructor must take

the server name as a parameter.
B. Create a constructor for setting up the NetPlayer as &serv

C. Override the setTurn method to handle 1) accepting coates over the network, 2)
translating them to be the right orientation for this boarttj 3) performing them locally.
This process is continued until the turn is complete: whentbrd “end” is received. If
“end” is the first thing sent, the NetPlayer loses, and thallBtayer wins. Likewise, if
the local player can'’t play, he loses, and the NetPlayerlghtcansmit “end”.

D. If the network input does not line up with expected inpttotv your own Exception
type.

E. Override “selectable” and “mustJump” to always returisda We will have only the

local player check moves, and the NetPlayer’s pieces arermeovable locally.

D.6.21 Phase 17

Phase seventeen is a fully-functional, doubléémed, re-sizable, networked, GUI-based
checkers game that uses threading to prevent freezinggdaetwork communication. Required

knowledge: Threads.

(@) Threads
i. Concurrent programming is also known as multi-threadedgamming. (p. 547)
ii. Athread is a single sequential flow of control within a gram.

iii. Most conventional programming languages are singlkeaded: handle only one task at any

given moment.
iv. Multi-threaded or concurrent programs have multipke#ds running simultaneously.

v. Two ways to create threads: extend Thread or implemenh&hig.

268

www.manaraa.com

vi. Life cycle (p. 554):
A. Athread is in the “new” state after creation before beitagted.

B. After the start() method is invoked, a thread is “alive 'hil¢ a thread is alive, it maybe
be “runnable” or “blocked.” A thread is blocked if it is waitj (for a notify), waiting to

join another thread, or sleeping.

C. Multi-threaded programs run the risk of “race conditidi® prevent these conditions,
methods in Java can be declared “synchronized,” in ordeetegmt more than one thread

from executing at the same time.

vii. In order to allow regular functionality (e.g. resizinghile waiting for another player’s play,
the players should be threads. By being Threads, Playes @ainot &ect the rest of the

system.
viii. Player (and therefore NetPlayer) will become a ThreHBaat is, Player inherits from Thread.
(b) Steps to allow threads:
i. InPlayer,
A. Have Player extend thread.

B. Override the synchronizatin method to wait as long as the game is not over and it's
not his turn. When it is the human player’s turn, if the he clayghe thread waits again

to be notified of a play by the human player.

C. When the turn is set for this playertify this waiting thread to wake up and realize it

is his turn.
ii. In Checkers, before setting turns, start both threads.
D.6.22 Phase 18

Phase eighteen is a fully-functional, doublefbred, resize-able, networked, multi-threaded, GUI-
based chess game with all typical moves. Detecting cheekarat stalemate are not required yet. Required

knowledge: loading images, chess moves.
1. WritePiece to be an abstract base class.

(a) Have the image for the piece retrieved at initialization

(b) Create methods for getting and setting the piece loeatio

269

www.manaraa.com

(c) Create a method checking if a piece is selectable.
(d) Create a method for checking if a move is valid.
(e) Create a method for performing a move.
() Create a method for drawing the piece.
2. WriteKnight to extend and override Piece as needed to define Knight mwvesertical steps and a

horizontal step, or one vertical step and two horizontgdsterminating on a square not occupied by a

piece of the same color.

3. Write Bishop to extend and override Piece as needed to define Bishop mamgsiumber of unob-
structed, diagonal steps in one direction terminating opa 8ot occupied by a piece of the same

color.

4. Write Queen to extend and override Piece as needed to define Queen mawesumber of unob-

structed steps in any single direction terminating on a spbbccupied by a piece of the same color.

5. WriteKing to extend and override Piece as needed to define King movessstep in any direction

terminating on a spot not occupied by a piece of the same.color

6. WriteRook to extend and override Piece as needed to define Rook movgsiusmber of unobstructed
steps in either the vertical or horizontal direction terating on a spot not occupied by a piece of the

same color.
7. WritePawn to extend and override Piece as needed to define Pawn moves:

(a) One step forward vertically to an empty spot.
(b) One diagonal step forward to a spot holding an oppongpidte.

(c) If the pawn has never been moved, two unobstructed statisally forward to an empty spot.

D.6.23 Phase 19

Phase nineteen is a fully-functional, doublefbred, resize-able, networked, multi-threaded, GUI-
based chess game with special moves (en-passant, caatithgawn promotion). Detecting checkmate and

stalemate are not required yet.

270

www.manaraa.com

1. Castling: consists of the king’s moving horizontally tateps toward his rook, and the rook’s moving
to the spot the king passed through. Castling can be done if
(a) The King has never been moved.
(b) The involved Rook has never been moved.
(c) There are no pieces between the King and the Rook.
(d) The squares the King is on, will pass through, and ends@nat in check.

(e) The King and the Rook are in the same row.
2. Rook: Castling accommodation.

3. Pawn:

(a) If a pawn is horizontally next to an opponent’s pawn thatitle movedon the previous turn
allow the “en-passant” capture diagonally forward abovedbuble-moved pawn. The double-

moved pawn is captured.

(b) If a pawn reaches the last row of the board, promote thengava queen. (Allowing the choice

of promotion to a rook, bishop, knight, or queen is optional.

D.6.24 Phase 20

Phase twenty is a fully-functional, doubleffered, resize-able, networked, multi-threaded, GUI-
based chess game that notifies on checkmate and stalemgtérdfiknowledge: Checkmate and stalemate

rules.
1. Update théiece class:

(a) Create a method for checking if this piece has any validesoNOTE: a move is not valid if it

causes one’s own king to be in check.

(b) Create a method for undoing a move.
2. Update th@layer class:

(a) Create a reference to its king.

(b) Create a method for determining if the king is “in checRhe king is in check if any of the

opponent’s pieces has a valid move to the king's location.

271

www.manaraa.com

(c) Create a way for determining if this player is “check-etht A player is check-mated if it is

already in check, and none of its pieces have valid movesitifideave king out of check.

(d) Create a way for determining if this player is “stale-gtht A player (and thus the game) is stale-
mated if the king is NOT in check but none of this player’s piebave valid moves for taking the

king out of check.

(e) Display a notification when a Player is check-mated. A/&lds check-mated if he is already in

check, and no valid move by any of his Pieces will take him duheck.

(f) Display a notification when a Player is stale-mated (tered a tie). A Player is stale-mated if

he is NOT in check, but all valid moves put him in check.

(g) ldentification of stalemates resulting from threef@gdetition and the fifty move rule is optional.

272

www.manharaa.com

Bibliography

[1] David Arnow and Oleg Barshay. On-line programming exaations using web to teach. IMCSE
‘99: Proceedings of the 4th annual SIGGSESCUE ITiICSE conference on Innovation and technology
in computer science educatigmages 21-24, New York, NY, USA, 1999. ACM Press.

[2] Owen Astrachan and Susan H. Rodger. Animation, visatibn, and interaction in ¢cs 1 assignments.
In SIGCSE '98: Proceedings of the twenty-ninth SIGCSE teahsiamposium on Computer science
educationpages 317-321, New York, NY, USA, 1998. ACM Press.

[3] Doug Baldwin. Teaching introductory computer sciensatee science of algorithms. BIGCSE ‘90:
Proceedings of the twenty-first SIGCSE technical symposiut@omputer science educatigmages
58-62, New York, NY, USA, 1990. ACM Press.

[4] Catherine C. Bareiss. A semester project for cs1SIGCSE ‘96: Proceedings of the twenty-seventh
SIGCSE technical symposium on Computer science educatiges 310-314, New York, NY, USA,
1996. ACM Press.

[5] H.S. Barrows and R. M. Tambly.Problem-Based Learning: An Approach to Medical Education
Springer Publishing Company, New York, 1980.

[6] Mordechai Ben-Ari. Constructivism in computer scieremucation. INSIGCSE ‘98: Proceedings of
the twenty-ninth SIGCSE technical symposium on Compuitence educationpages 257-261, New
York, NY, USA, 1998. ACM Press.

[7] C. Bereiter and M. Scardamalidntentional learning as a goal of instructionErlbaum Associates,
Hillsdale, NJ, USA, 1989.

[8] Kim B. Bruce. Controversy on how to teach cs 1: a discussio the sigcse-members mailing list.
In ITICSE-WGR ‘04: Working group reports from ITICSE on Inniiwma and technology in computer
science educatigpages 29-34, New York, NY, USA, 2004. ACM Press.

[9] Kevin R. Burger. Teaching two-dimensional array cortsep java with image processing examples. In
SIGCSE ‘03: Proceedings of the 34th SIGCSE technical syiomposn Computer science educatjon
pages 205-209, New York, NY, USA, 2003. ACM Press.

[10] Lawrence Cavedon, James Harland, and Lin Padgham. léPnobased learning with technological
support in an ai subject: description and evaluatiolA@SE ‘97: Proceedings of the 2nd Australasian
conference on Computer science educatmages 191-200, New York, NY, USA, 1996. ACM Press.

[11] Mel O Cinneide and Richard Tynan. A problem-based approadatthing design patterns. INCSE-
WGR ‘04: Working group reports from ITICSE on Innovation aedhnology in computer science
education pages 80—-82, New York, NY, USA, 2004. ACM Press.

[12] Steve Cunningham. Graphical problem solving and disoenmunication in the beginning computer
graphics course. IBIGCSE ‘02: Proceedings of the 33rd SIGCSE technical syimposn Computer
science educatigpages 181-185, New York, NY, USA, 2002. ACM Press.

273

www.manaraa.com

[13] Steve Cunningham and Angela B. Shiflet. Computer giapini undergraduate computational science
education. I'BIGCSE ‘03: Proceedings of the 34th SIGCSE technical syimmpaz Computer science
education pages 372-375, New York, NY, USA, 2003. ACM Press.

[14] Timothy Davis, Robert Geist, Sarah Matzko, and Jamesté&lle Course development undégvn. In
Eurographics ‘04: Proceedings of Eurographics 20@4ges 23-27, New York, NY, USA, 2004. ACM
Press.

[15] Timothy Davis, Robert Geist, Sarah Matzko, and Jamest&lle reyvr: a first step. INSIGCSE ‘'04:
Proceedings of the 35th SIGCSE technical symposium on Gengmience educatiqpages 125-129,
New York, NY, USA, 2004. ACM Press.

[16] Timothy Davis, Robert Geist, Sarah Matzko, and Jamest&llle reyvn: trial phase for the new cur-
riculum. InSIGCSE ‘07: Proceedings of the 38th SIGCSE technical syinmposn Computer science
educationpages 415-419, New York, NY, USA, 2007. ACM Press.

[17] Timothy A. Davis. Graphics-based learning in first-yeamputer science. IBurographics ‘06: Pro-
ceedings of Eurographics 2008ew York, NY, USA, 2006. ACM Press.

[18] Timothy A. Davis and Edward W. Davis. Exploiting frameherence with the temporal depthffar
in a distributed computing environment. BVGS ‘99: Proceedings of the 1999 IEEE symposium on
Parallel visualization and graphicpages 29-38, New York, NY, USA, 1999. ACM Press.

[19] Rick Decker and Stuart Hirshfield. The top 10 reasons whject-oriented programming can’t be
taughtin cs 1. ISIGCSE ‘94: Proceedings of the twenty-fifth SIGCSE sympuosiuComputer science
education pages 51-55, New York, NY, USA, 1994. ACM Press.

[20] Adair Dingle and Carol Zander. Assessing the rippfee of cs1 language choice. Rroceedings
of the second annual CCSC on Computing in Small CollegesiVestern conferencpages 85-93, ,
USA, 2000. Consortium for Computing Sciences in Colleges.

[21] Barbara Duch, Susan Gron, and Deborah AllEne power of problem-based learningtylus Publish-
ing, LLC, Sterling, VA, 2001.

[22] Andrew T. Duchowski and Timothy A. Davis. Teaching aligoms and data structures through graphics.
In Eurographics ‘07: Proceedings of Eurographics 200w York, NY, USA, 2007. ACM Press.

[23] Harriet J. Fell and Viera K. Proulx. Exploring martiafapetary images: €+ exercises for csl. In
SIGCSE '97: Proceedings of the twenty-eighth SIGCSE teahsymposium on Computer science
education pages 30-34, New York, NY, USA, 1997. ACM Press.

[24] Ronald A. Fisher.The Design of Experiments, 8th editiorlafner Publishing Company, New York,
USA, 1966.

[25] Ahmad Ghafarian. Teaching desigdfiextively in the introductory programming coursesA8SC ‘00:
Proceedings of the fourteenth annual consortium on Smadle@es Southeastern conferengages
201-208, , USA, 2000. Consortium for Computing Sciencesale@es.

[26] Ahmad Ghafarian. Incorporating a semester-long mtajeo the cs 2 coursel. Comput. Small Coll.
17(2):183-190, 2001.

[27] Andrew S. GlassneAn introduction to ray tracingAcademic Press Ltd., London, UK, 1989.

[28] Tony Greening, Judy Kay, fieey H. Kingston, and Kathryn Crawford. Results of a pbl tiiglirst-year
computer science. IACSE ‘97: Proceedings of the 2nd Australasian conferencEa@mputer science
education pages 201-206, New York, NY, USA, 1996. ACM Press.

274

www.manaraa.com

[29] Brian Hanks, Charlie McDowell, David Draper, and MikavKrnjajic. Program quality with pair pro-
gramming in csl. INTICSE ‘04: Proceedings of the 9th annual SIGCSE conferendanovation and
technology in computer science educatipages 176—180, New York, NY, USA, 2004. ACM Press.

[30] Simon Holland, Robert Gfiiths, and Mark Woodman. Avoiding object misconceptions SIGCSE
‘97: Proceedings of the twenty-eighth SIGCSE technicalp®gium on Computer science education
pages 131-134, New York, NY, USA, 1997. ACM Press.

[31] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDoaald Werner Stuetzle. Surface recon-
struction from unorganized points. BIGGRAPH ‘92: Proceedings of the 19th annual conference on
Computer graphics and interactive technigugages 71-78, New York, NY, USA, 1992. ACM Press.

[32] Chenglie Hu. Rethinking of teaching objects-fir&ducation and Information Technologjéx3):209—
218, 2004.

[33] John Hunt and Sarah Matzko. Retooling a curriculéocepted to J. Comput. Small CoR007.
[34] Kenny Hunt. Using image processing to teach cs1 and$E2CSE Bull.35(4):86-89, 2003.

[35] Ricardo Jimenez-Peris, Sami Khuri, and Marta®atiTartinez. Adding breadth to cs1 and cs2 courses
through visual and interactive programming projectsSIGCSE ‘99: The proceedings of the thirtieth
SIGCSE technical symposium on Computer science educatiges 252—256, New York, NY, USA,
1999. ACM Press.

[36] D. Johnson and R. Johnsdrearning Together and Alonéllyn and Bacon, Needham Heights, MA, 5
edition, 1999.

[37] Immanuel KantCritique of Pure Reasarst. Martin’s Press, New York, USA, 1965.

[38] Neha Katira, Laurie Williams, Eric Wiebe, Carol Milleuzanne Balik, and Ed Gehringer. On under-
standing compatibility of student pair programmersSIGCSE ‘04: Proceedings of the 35th SIGCSE
technical symposium on Computer science educapiages 7—-11, New York, NY, USA, 2004. ACM
Press.

[39] Brian W. Kernighan and Dennis M. Ritchi€he C Programming LanguagPrentice Hall, PTR, Upper
Saddle River, NJ, USA, 2 edition, 1988.

[40] Andrew Koenig. C traps and pitfalls. Computing Sciefieehnical Report 123, AT&T Bell Laborato-
ries, Murray Hill, NJ, July 1 1986.

[41] Michael Kolling, Bett Koch, and John Rosenberg. Regrients for a first year object-oriented teaching
language. I'5IGCSE '95: Proceedings of the twenty-sixth SIGCSE teahgyenposium on Computer
science educatigpages 173-177, New York, NY, USA, 1995. ACM Press.

[42] John L. Kundert-GibbsMaya: Secrets of the ProSYBEX Inc., Alameda, CA, USA, 2002.

[43] Gilbert W. Laware and Andrew J. Walters. Real world gewbs bringing life to course content. In
CITC5 '04: Proceedings of the 5th conference on Informatemhnology educatigrpages 6—12, New
York, NY, USA, 2004. ACM Press.

[44] Pete Lee and Chris Phillips. Programming versus deigster): teaching first year students. In
ITICSE ‘98: Proceedings of the 6th annual conference ondhehing of computing and the 3rd annual
conference on Integrating technology into computer s@ertucationpage 289, New York, NY, USA,
1998. ACM Press.

[45] Paul M. Leonardi. The mythos of engineering culture: tAdy of communicative performances and
interaction. Master’s thesis, Boulder, CO, USA, 2003.

275

www.manaraa.com

[46] Raymond Lister, Anders Berglund, Tony Clear, Joe Ber¢flathy Garvin-Doxas, Brian Hanks, Lew
Hitchner, Andrew Luxton-Reilly, Kate Sanders, Carstenueh and Jacqueline L. Whalley. Research
perspectives on the objects-early debatel TIRSE-WGR '06: Working group reports on ITICSE on
Innovation and technology in computer science educapages 146—-165, New York, NY, USA, 2006.
ACM Press.

[47] Margaret Martinez. Designing intentional learningzieonments. InSIGDOC ‘97: Proceedings of
the 15th annual international conference on Computer danation pages 173-180, New York, NY,
USA, 1997. ACM Press.

[48] Sarah Matzko, Peter J. Clarke, Tanton H. Gibbs, BriarMalloy, James F. Power, and Rosemary
Monahan. Reveal: a tool to reverse engineer class diagramSRPIT ‘02: Proceedings of the For-
tieth International Conference on Tools Pacifiages 13-21, Darlinghurst, Australia, Australia, 2002.
Australian Computer Society, Inc.

[49] Sarah Matzko and Timothy Davis. Pair design in undeigede labsJ. Comput. Small Coll22(2):123-
130, 2006.

[50] Sarah Matzko and Timothy Davis. Using graphics redeséocteach freshman computer science. In
SIGGRAPH ‘'06: ACM SIGGRAPH 2006 Educators prograage 9, New York, NY, USA, 2006.
ACM Press.

[51] Sarah Matzko and Timothy A. Davis. Teaching cs1 withpdnias and c. IMTICSE ‘06: Proceedings
of the 11th annual SIGCSE conference on Innovation and tdoby in computer science educatjon
pages 168-172, New York, NY, USA, 2006. ACM Press.

[52] Alasdair McAndrew and Anne Venables. A "secondary”®a digital image processing. BIGCSE
‘05: Proceedings of the 36th SIGCSE technical symposiumaomnpDiter science educatippages 337—
341, New York, NY, USA, 2005. ACM Press.

[53] Charlie McDowell, Linda Werner, Heather E. Bullock,dadulian Fernald. The impact of pair pro-
gramming on student performance, perception and persistdnICSE ‘03: Proceedings of the 25th
International Conference on Software Engineeripgges 602—607, Washington, DC, USA, 2003. IEEE
Computer Society.

[54] Emilia Mendes, Lubna Basil Al-Fakhri, and Andrew Lurt®eilly. Investigating pair-programming
in a 2nd-year software development and design computanceieourse. ITiICSE ‘05: Proceedings
of the 10th annual SIGCSE conference on Innovation and tdoby in computer science educatjon
pages 296—-300, New York, NY, USA, 2005. ACM Press.

[55] Barbara Moskal, Deborah Lurie, and Stephen Coopeluatiag the éfectiveness of a new instructional
approach. IIrSIGCSE '04: Proceedings of the 35th SIGCSE technical syinmpicsn Computer science
educationpages 75-79, New York, NY, USA, 2004. ACM Press.

[56] F. Musgrave. Grid tracing: Fast ray tracing for heigbtds. Technical Report RR-639, Yale University,
Dept. of Comp. Sci., July 1988.

[57] M. A. Pérez-Quidnes, Steven Edwards, Claude Anderson, Doug Baldwin, J&aesti, and Paul J.
Wagner. Transitioning to an objects-early three-courseductory sequence: issues and experiences.
In SIGCSE ‘04: Proceedings of the 35th SIGCSE technical syimmmamn Computer science educatjon
pages 499-500, New York, NY, USA, 2004. ACM Press.

[58] Jean PiagefThe development of thought: equilibration of cognitiveistures (translated by A. Rosin)
Viking Press, New York, USA, 1977.

276

www.manaraa.com

[59] Margaret M. Reek. A top-down approach to teaching paogming. InSIGCSE '95: Proceedings of
the twenty-sixth SIGCSE technical symposium on Computce educationpages 6—9, New York,
NY, USA, 1995. ACM Press.

[60] Erik Reinhard, Michael Ashikhmin, Bruce Gooch, andd?ethirley. Color transfer between images.
IEEE Comput. Graph. Appl21(5):34-41, 2001.

[61] James Roberge. Creating programming projects withaliimpact. IrSIGCSE ‘92: Proceedings of the
twenty-third SIGCSE technical symposium on Computer seieducationpages 230—234, New York,
NY, USA, 1992. ACM Press.

[62] Eric Roberts. The dream of a common language: the sdarctimplicity and stability in computer
science education. IBIGCSE ‘04: Proceedings of the 35th SIGCSE technical syimnpmazn Computer
science educatigpages 115-119, New York, NY, USA, 2004. ACM Press.

[63] Eric S. Roberts. Using c in csl: evaluating the stanforgerience. I'SIGCSE ‘93: Proceedings of
the twenty-fourth SIGCSE technical symposium on Compaiense educatiorpages 117-121, New
York, NY, USA, 1993. ACM Press.

[64] Nathan Rountree, Janet Rountree, Anthony Robins, atRHannah. Interacting factors that predict
success and failure in a cs1 course. ITTCSE-WGR ‘04: Working group reports from ITICSE on
Innovation and technology in computer science educapages 101-104, New York, NY, USA, 2004.
ACM Press.

[65] Jean-Jacques Rousse&mile, or On EducationParis, France, 1762.

[66] Keith Rule.3D graphics file formats: a programmer’s referen@adison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 1996.

[67] G. Michael Schneider. A model for a three course intcidry sequenceSIGCSE Bull.36(2):40-43,
2004.

[68] E. Seymour and N. HewitiTalking about leaving: Why Undergraduates Leave the Seiemestview
Press, Boulder, CO, USA, 1997.

[69] Rahman Tashakkori. Encouraging undergraduate relsear digital image processing approach.
Comput. Small Col}.20(3):173-180, 2005.

[70] Joseph A. Turner and Joseph L. Zachary. Using counsg{fmogramming projects in cs2. 81IGCSE
‘99: The proceedings of the thirtieth SIGCSE technical sysigm on Computer science education
pages 43—-47, New York, NY, USA, 1999. ACM Press.

[71] L. S. Vygotsky.Mind in Society: The Development of Higher PsychologicaldessesHarvard Univ.
Press, Cambridge, MA, USA, 1978.

[72] S. Walker and B. Fraser. Development and validationrnahatrument for assessing distance education
learning environments in higher educatidrearning Environments Researé289-308, 2005.

[73] Kent White. A comprehensive cmps ii semester proj&tGCSE Bull.35(2):70-73, 2003.

[74] Richard Wicentowski and Tia Newhall. Using image pregiag projects to teach cs1 topics SIGCSE
‘05: Proceedings of the 36th SIGCSE technical symposiumaomnpDiter science educatippages 287—
291, New York, NY, USA, 2005. ACM Press.

[75] Laurie Williams, Robert R. Kessler, Ward Cunninghamd &on Jéries. Strengthening the case for
pair programminglEEE Softw. 17(4):19-25, 2000.

277

www.manaraa.com

[76] Laurie Williams and Richard L. Upchurch. In support ¢dident pair-programming. ISIGCSE ‘01:
Proceedings of the thirty-second SIGCSE technical syrapoeh Computer Science Educatipages
327-331, New York, NY, USA, 2001. ACM Press.

[77] Rosalee Wolfe. New possibilities in the introductomaghics course for computer science majors.
SIGGRAPH Comput. Grapi33(2):35-39, 1999.

[78] Craig Zilles. Spimbot: an engaging, problem-basedaagh to teaching assembly language program-
ming. In SIGCSE ‘05: Proceedings of the 36th SIGCSE technical syiomposn Computer science
educationpages 106-110, New York, NY, USA, 2005. ACM Press.

278

www.manharaa.com

