
www.manaraa.com

τέχνη  Q-O L

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Science

by

Sarah Ruth Matzko

August 2007

Accepted by:

Dr. Robert Geist, Committee Chair

Dr. Timothy Davis

Dr. Pradip Srimani

Dr. Andrew Duchowski



www.manaraa.com

UMI Number: 3274327

3274327
2007

UMI Microform
Copyright

All rights reserved. This microform edition is protected against 
    unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road

P.O. Box 1346
     Ann Arbor, MI 48106-1346 

 by ProQuest Information and Learning Company. 



www.manaraa.com

Abstract

A new approach for teaching undergraduate computer sciencecourses is presented. A general teach-

ing approach that is its basis is also described. Summaries and guides to several introductory courses are

provided. Results from the use of the curriculum are presented, and other applications of the approach are

suggested.

ii



www.manaraa.com

Acknowledgments

I would like to thank the members of the curriculum committeefor allowing theτέχνη approach to

be used with Clemson University students. Also, I thank the supportive members of the Clemson University

Computer Science faculty for their willingness to adopt theτέχνη approach and for their constructive feed-

back. I greatly appreciate the dedication of the members of my committee to the success ofτέχνη and their

creative ideas and advice. I thank my family for believing I would complete my degree and Nick, whose

certainty in my abilities convinced me that I would succeed.

This work was supported in part by the CISE Directorate of theU.S. National Science Foundation

under award EIA-0305318.

iii



www.manaraa.com

Table of Contents

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . vii

List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 2
2.1 Digital Production Arts Degree . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 2
2.2 Raytracing in a Second-Year Course . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 3

3 Curriculum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 9
3.1 Educational Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 9
3.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 10
3.3 Curriculum Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 11
3.4 Educational Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 12

4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 19
4.1 Semester-Long Projects in Introductory Courses . . . . . .. . . . . . . . . . . . . . . . . . 19
4.2 Graphics in Introductory Courses . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 20

5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 22
5.1 Course Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 22
5.2 Supporting Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 34
5.3 Introductory Language Selection . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 41

6 Adaptations to Other Environments . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 47
6.1 Adaptation to Small Colleges . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 47
6.2 Adaptation to an Upper-Level Course . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 49

7 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 53
7.1 The Original, Second-Year Raytracing Course (215) . . . .. . . . . . . . . . . . . . . . . . 53
7.2 Computer Science I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 59
7.3 Computer Science II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 69
7.4 Second-Year Data Structures Course (212) . . . . . . . . . . . .. . . . . . . . . . . . . . . 74

iv



www.manaraa.com

7.5 Second-Year, Tools and Techniques for Software Development (215) . . . . . . . . . . . . . 77
7.6 Retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 80
7.7 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 81

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 83
A CS1 Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 84
B CS2 Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 136
C Algorithms and Data Structures Course Guide . . . . . . . . . . . .. . . . . . . . . . . . . 225
D Tools and Techniques for Software Development Guide . . . . .. . . . . . . . . . . . . . . 230

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 273

v



www.manaraa.com

List of Tables

7.1 2005 101 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 68
7.2 2006-2007 101 Walker-Fraser Surveys . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 69
7.3 2006 Student Perceptions of 102 . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 72
7.4 2006 102 Skills Comparison . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 73
7.5 2006 102 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 73
7.6 2007 Walker-Fraser Surveys of raytracing Courses . . . . .. . . . . . . . . . . . . . . . . 74
7.7 2007 215 Walker-Fraser Results . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 80
7.8 Retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 81

vi



www.manaraa.com

List of Figures

2.1 2002 CPSC 215 Phase II Student Renderings. . . . . . . . . . . . .. . . . . . . . . . . . . 7

6.1 Fully rendered image of the Civil War-era Hunley Submarine . . . . . . . . . . . . . . . . . 51

7.1 2002 CPSC 215 Example Student Renderings. . . . . . . . . . . . .. . . . . . . . . . . . 54
7.2 2004 CPSC 215 Example Student Renderings. . . . . . . . . . . . .. . . . . . . . . . . . 56
7.3 2003-2004 Pilot 215 Course Relevance . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 57
7.4 2003-2004 Pilot 215 Graphics Interest . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 57
7.5 2003-2004 Pilot 215 Perceived Skill Development . . . . . .. . . . . . . . . . . . . . . . . 58
7.6 2005 CPSC 101 Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 60
7.7 2005 CPSC 101 Phase 1: Images with Enlarged Detail . . . . . .. . . . . . . . . . . . . . 61
7.8 2006 Covenant CPSC 101 Phase 1 . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 62
7.9 2005 CPSC 101 Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 63
7.10 2005 CPSC 101 Phase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 64
7.11 2005 CPSC 101 Phase 3: Convolution Filters . . . . . . . . . . .. . . . . . . . . . . . . . 65
7.12 2006 Covenant CPSC 101 Phase 3 . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 66
7.13 2006 Covenant CPSC 101 Phase 3 . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 67
7.14 2005 CPSC 101 Phase 4 Color Transfer . . . . . . . . . . . . . . . . .. . . . . . . . . . . 67
7.15 CPSC 101 Phase 4 Color Transfer Sources . . . . . . . . . . . . . .. . . . . . . . . . . . . 68
7.16 2006 CPSC 102 Student Images . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 70
7.17 2007 Covenant College CS2 Images . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 71
7.18 2006 CPSC 212 Phase 1: Tangent plan estimation . . . . . . . .. . . . . . . . . . . . . . . 75
7.19 2006 CPSC 212 Phases 2-4 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 75
7.20 2006-2007 CPSC 212-215 Comparisons . . . . . . . . . . . . . . . .. . . . . . . . . . . . 76
7.21 2007 CPSC 215 Student GUI Checkers Games. . . . . . . . . . . . .. . . . . . . . . . . . 77
7.22 2007 CPSC 215 Student GUI Chess Games. . . . . . . . . . . . . . . .. . . . . . . . . . . 78
7.23 2007 Features in Chess Game by Seagers, Musselman, and Squires . . . . . . . . . . . . . . 79
24 Demonstration of the left-handed and right-handed coordinate systems . . . . . . . . . . . . 142
25 Gradient sky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 147
26 Ray-sphere intersection . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 151
27 Blue sky and filled circles . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 157
28 Ray scene projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 158
29 Blue sky, circles, and floor . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 161
30 Checker algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 162
31 Sky, circles, and checkered floor . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 163
32 Shadows on a bright scene . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 185
33 Angle to the light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 188
34 Lighting with diffuse component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
35 Light attenuation with distance . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 194
36 Vector bounce illustration . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 196
37 Scene with reflectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 201

vii



www.manaraa.com

38 Anti-aliased image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 204
39 Intersection tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 206
40 Scene with boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 211
41 Checkerboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 242
42 Checkerboard with immobile pieces . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 247
43 Checkerboard with inner circle . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 249
44 Checkerboard with 3D pieces . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 250
45 Checkerboard with 3D, anti-aliased pieces . . . . . . . . . . . .. . . . . . . . . . . . . . . 251

viii



www.manaraa.com

List of Algorithms

2.1 Fundamental Object Structure . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 5
2.2 Pseudo-code for raytracing . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 6
.1 Output of a single-pixel image file . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 99
.2 800 by 600 image creation . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 101
.3 Complete program to read in and print back out a file . . . . . . .. . . . . . . . . . . . . . 103
.4 Complete function for skipping over comments and white space . . . . . . . . . . . . . . . 106
.5 Main function that returns an integer . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 107
.6 The complete function for reading the ASCII header . . . . . .. . . . . . . . . . . . . . . 109
.7 Header file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 110
.8 Invocation of the header-reading function and error testing . . . . . . . . . . . . . . . . . . 110
.9 Modification of the image to exclude blue . . . . . . . . . . . . . . .. . . . . . . . . . . . 112
.10 Image grayscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 113
.11 Adding scan lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 114
.12 Fade program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 115
.13 Monochrome program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 117
.14 Declaration of an array of unsigned characters to hold image data . . . . . . . . . . . . . . . 118
.15 Reading of the entire block of image data . . . . . . . . . . . . . .. . . . . . . . . . . . . 119
.16 Rotate 90 degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 120
.17 Applying the sharpen filter . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 122
.18 Output of the entire block of image data . . . . . . . . . . . . . . .. . . . . . . . . . . . . 122
.19 Dynamic memory allocation . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 123
.20 3 by 3 multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 124
.21 Character and float conversion . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 125
.22 Character and float conversion, continued. . . . . . . . . . . .. . . . . . . . . . . . . . . . 126
.23 RGB to LMS and LMS to RGB . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 126
.24 LMS to CIELAB and CIELAB to LMS . . . . . . . . . . . . . . . . . . . . . . .. . . . . 127
.25 RGB to CIELAB and CIELAB to RGB . . . . . . . . . . . . . . . . . . . . . . .. . . . . 127
.26 Image reading utilities . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 128
.27 CIELAB conversion main function . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 129
.28 Reading file name from command line . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 130
.29 File reading with file handle . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 131
.30 Log (base 10) and Power of Ten functions . . . . . . . . . . . . . . .. . . . . . . . . . . . 132
.31 Conversion with minimized skewing . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 132
.32 File information structure . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 133
.33 Mean and standard deviation . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 134
.34 Image scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 134
.35 Color transfer main function . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 135
.36 Stub raytrace method to fill the image data array with red pixels . . . . . . . . . . . . . . . 138
.37 Function for printing a PPM format image to standard out .. . . . . . . . . . . . . . . . . . 139
.38 Main function for invoking the appropriate functions toproduce an image file . . . . . . . . 139

ix



www.manaraa.com

.39 Main function with parameters for accepting command-line arguments . . . . . . . . . . . . 140

.40 Declaration of the scene structure . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 141

.41 Declaration of the sky structure . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 143

.42 Scene set up function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 144

.43 Conversion from pixel coordinates to world coordinates. . . . . . . . . . . . . . . . . . . . 145

.44 Function to compute a specified pixel’s values . . . . . . . . .. . . . . . . . . . . . . . . . 145

.45 Dereferencing of function pointer . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 145

.46 Conversion of the pixel’s channel values to the [0,255] range . . . . . . . . . . . . . . . . . 146

.47 Complete program for creating a gradient sky pattern . . .. . . . . . . . . . . . . . . . . . 146

.48 Addition of sphere’s color function . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 148

.49 Consolidation of shared attributes in the object structure . . . . . . . . . . . . . . . . . . . 148

.50 Modification of color functions to match new object structure . . . . . . . . . . . . . . . . . 149

.51 Square macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 151

.52 Point subtraction function . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 152

.53 Intersection structure . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 152

.54 Sphere intersection function . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 153

.55 Sky intersection function . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 154

.56 Signature information added to the intersection function pointer declaration . . . . . . . . . 155

.57 Specification of the objects in the scene . . . . . . . . . . . . . .. . . . . . . . . . . . . . 156

.58 Addition of nearest object search . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 157

.59 Specification of the floor structure . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 158

.60 Addition of floor structure to the geometry union . . . . . . .. . . . . . . . . . . . . . . . 158

.61 Floor’s color function . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 158

.62 Floor intersection function . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 159

.63 Addition of the floor to the scene . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 160

.64 Two colors in the floor structure . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 160

.65 Specification of the floor colors . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 161

.66 Functional floor texture . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 163

.67 If-not-defined preprocessor directive . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 164

.68 Point class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 165

.69 Point class implementation . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 167

.70 Color class definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 168

.71 Beginning of Color class implementation . . . . . . . . . . . . .. . . . . . . . . . . . . . 168

.72 Definition of intersection structure . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 169

.73 Definition of purely virtual Object methods to be overridden by child classes . . . . . . . . . 169

.74 Scene class header file . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 170

.75 Definition of the Sky class . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 171

.76 Sky class code file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 171

.77 Sphere class definition . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 172

.78 Sphere class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 173

.79 Floor class definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 174

.80 Floor class implementation . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 174

.81 Initialization of Objects in the Scene . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 175

.82 Scene class’s first intersected method and coordinate computation method . . . . . . . . . . 175

.83 Raytracer class definition . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 176

.84 Raytracer implementation . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 177

.85 Raytracer main function and trace method . . . . . . . . . . . . .. . . . . . . . . . . . . . 178

.86 Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 178

.87 Sphere class definition . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 179

.88 Light class definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 179

.89 Scene class definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 180

x



www.manaraa.com

.90 Addition of Lights to the Scene . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 181

.91 Method to iteratively return the next light visible froma given point . . . . . . . . . . . . . 182

.92 Addition of a diffuse color method in the Object class . . . . . . . . . . . . . . . . . . . . .182

.93 Creation of diffuse color methods in child classes . . . . . . . . . . . . . . . . . . . . . .. 183

.94 Addition of boolean method specifying whether lightingaffects this object . . . . . . . . . . 183

.95 Color add-to operator overloading . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 184

.96 Addition of diffuse lighting to color computation . . . . . . . . . . . . . . . . . . . . . .. 184

.97 Point distance, division and unit vector . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 186

.98 Definition of Sky intersection . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 187

.99 Purely virtual normal computation method in Object class . . . . . . . . . . . . . . . . . . . 188

.100 Normal computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 189

.101 Color scaling method . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 189

.102 Raytracer’s pixel trace method . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 190

.103 Sphere class normal computation . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 192

.104 Declaration of the weight that distance has in this Raytracer . . . . . . . . . . . . . . . . . . 192

.105 Addition of a distance-traveled-so-far parameter . . .. . . . . . . . . . . . . . . . . . . . . 192

.106 Raytracer::tracepixel update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

.107 Addition of initial distance traveled argument to the pixel trace invocation. . . . . . . . . . 194

.108 Point arithmetic methods . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 195

.109 Vector bounce function . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 196

.110 Addition of reflectivity attributes to Scene Objects . .. . . . . . . . . . . . . . . . . . . . . 197

.111 Definition of objects to have reflective components . . . .. . . . . . . . . . . . . . . . . . 198

.112 Separation of diffuse color computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

.113 Computation of specular reflectivity . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 199

.114 Color scaling methods . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 200

.115 Update of tracepixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

.116 Pseudo-random jitter method . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 202

.117 Raytracer’s anti-aliasing trace . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 203

.118 Invocation of anti-aliasing trace from Raytracer loop. . . . . . . . . . . . . . . . . . . . . 204

.119 Box class definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 205

.120 Box constructor and ambient color methods . . . . . . . . . . .. . . . . . . . . . . . . . . 206

.121 Initialization of Box intersection computation variables . . . . . . . . . . . . . . . . . . . . 207

.122 Box class normal computation . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 208

.123 Addition of boxes to the scene . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 209

.124 Linked list node class . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 210

.125 Linked list node add after method . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 210

.126 Linked list iterator class . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 212

.127 Linked list iterator methods . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 212

.128 Iterator method for getting the next Object . . . . . . . . . .. . . . . . . . . . . . . . . . . 212

.129 Iterator dereferencing and incrementing . . . . . . . . . . .. . . . . . . . . . . . . . . . . 212

.130 Beginning of Linked list code . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 213

.131 Remainder of linked list class . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 213

.132 Creation of linked list functions . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 214

.133 Scene objects in a linked list . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 215

.134 First intersection method with a linked list . . . . . . . . .. . . . . . . . . . . . . . . . . . 216

.135 Next light method with a linked list . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 216

.136 Scene specification file . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 218

.137 friend function for reading in a Point . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 219

.138 Friend function for reading in a color . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 219

.139 Sphere constructor for reading a sphere . . . . . . . . . . . . .. . . . . . . . . . . . . . . 220

.140 Box input constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 221

xi



www.manaraa.com

.141 Floor input constructor . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 221

.142 Sky input constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 222

.143 Light constructor for reading input . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 222

.144 Added object reading method . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 223

.145 Scene object reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 223

.146 Raytracer scene name parameter . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 224

.147 Main function that accepts an input file . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 224

.148 Simple program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 235

.149 Beginning of the GameSquare class . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 239

.150 Draw method for creating the square in the appropriate location . . . . . . . . . . . . . . . 239

.151 CheckerBoard class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 241

.152 Piece class instance variables and accessor/mutator methods . . . . . . . . . . . . . . . . . 243

.153 Piece’s draw method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 244

.154 Square class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 245

.155 CheckerBoard Piece placement method . . . . . . . . . . . . . . .. . . . . . . . . . . . . 245

.156 Updated CheckerBoard constructor . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 246

.157 Beginning of Checkers class . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 246

.158 Piece placement method . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 247

.159 Checkers class instantiation . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 247

.160 Beginning of the Piece class draw method . . . . . . . . . . . . .. . . . . . . . . . . . . . 248

.161 End of draw method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 248

.162 Beginning of updated draw method . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 249

.163 Gradient Paint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 249

.164 Creation of inset circle . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 250

.165 Addition of anti-aliasing . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 251

.166 Number across accessor method . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 252

.167 Piece draw method with center location specified . . . . . .. . . . . . . . . . . . . . . . . 253

.168 Simplified Piece draw method . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 253

.169 Piece play method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 254

.170 Addition of reference to moving piece . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 254

.171 Updated CheckerBoard’s paint method . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 254

.172 Extension of the MouseAdapter . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 255

.173 Mouse pressed event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 255

.174 Mouse dragged event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 256

.175 Mouse released method . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 256

.176 Addition of listener . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 257

.177 Player class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 258

.178 Addition of a Player to the Piece class . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 259

.179 Updated color accessor method . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 259

.180 Updated Piece draw method . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 260

.181 Move validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 260

.182 Piece’s make play move with validation . . . . . . . . . . . . . .. . . . . . . . . . . . . . 260

.183 Piece placement with associated players . . . . . . . . . . . .. . . . . . . . . . . . . . . . 261

.184 Sample exception handling . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 267

xii



www.manaraa.com

Chapter 1

Introduction

Theτέχνη (pronounced “TEKnee”) project is a zero-based re-design ofthe undergraduate curricu-

lum in computer science to incorporate more artistic components.τέχνη is the Greek word for art. It shares

its root withτεχνoλoγία, the Greek word for technology. The project name comes out ofan effort to reunite

art with computer science in order to broaden computer science education [15].

Inspiration from the success of the Digital Production Artsprogram and the following pilot course

led to the National Science Foundation grant titled “τέχνη.” Research under the grant has led to 9 papers thus

far, covering the success of the pilot course [15], the introductory course [51], [50], the laboratory approach

[49], the second (CS2) course [17], the first year trial phase[16], the second-year data structures course [22],

the application ofτέχνη to an upper-level course [14], and the adaptation ofτέχνη to a different institution

[33].

The background ofτέχνη is covered in Chapter 2. The curriculum structure and generalized educa-

tional approach are discussed in Chapter 3. Chapter 4 coverssimilar approaches in the literature, and Chapter

5 fleshes out the details of the implementation ofτέχνη. Applications ofτέχνη to other settings are explained

in Chapter 6, and results and evaluation may be found in Chapter 7. Detailed guides for those who wish to

try τέχνη courses in their own settings are available in the appendices.

1



www.manaraa.com

Chapter 2

Background

The path to creating theτέχνη approach began by observations made from the Digital Production

Arts degree program and from the first trial course taught with a large-scale, graphical problem. From the

beginning,τέχνη demonstrated signs of success which led to its large-scale adoption.

2.1 Digital Production Arts Degree

In 1999, Clemson University established a graduate degree program that bridged the arts and the

sciences. The Master of Fine Arts in Digital Production Artsis a two-year program that is aimed at produc-

ing digital artists who carry solid foundations in computerscience and thus can expect to find employment

in the rapidly expanding special effects industry for video, film, and interactive gaming. Students in the pro-

gram are required to complete graduate-level work in both the arts and computer science. Graduates have

found employment in many of the top studios, e.g., Industrial Light & Magic (Lucasfilms), Rhythm & Hues,

BlueSky Studios, DreamWorks, Tippett Studios, and Pixar. This program effected a significant change in the

Clemson undergraduate degree program enrollment. The faculty witnessed a shift of undergraduate majors

from the B.S. degree in Computer Science to the B.A. degree inComputer Science with an elected minor in

Art. Whether these undergraduate students ultimately pursue the DPA program or not, it is our position that

this shift to a more balanced educational experience is of substantial benefit to the students and to society.

An interesting and initially unexpected result of the DPA program was the demographic of the

students enrolled. The problem of under-representation ofwomen and minorities in computing programs is

well known and, nationwide, shows little sign of amelioration. The DPA program had an initial enrollment

2



www.manaraa.com

of 32% women and 16% African American, both well above the averages for more conventional graduate

programs in computing, including those at Clemson. A natural conjecture was that a DPA-based re-design

of the computer science program would effect similar enrollment shifts, and the new curriculum mightmerit

widespread adoption on this basis as well as on the bases of enhanced problem-solving skills of the students

and enhanced enthusiasm of all participants.

Consequently, the experiences and observations from the Digital Production Arts program led to the

investigational application of art and graphics research into required computing courses. Instruction in these

courses was and continues to be strictly oriented toward large-scale problem-solving using problems that are

visual in nature.

2.2 Raytracing in a Second-Year Course

The trial course for this new, graphical approach was CPSC 215, Tools and Techniques for Software

Development, a second-year course. The intent of the courseat the time was instruction in programming

methodology using C and C++. To meet this end, the trial course [15] was taught through the large-scale

problem of constructing a raytracing system for rendering synthetic images. The trial course’s success led to

the National Science Foundation grant titledτέχνη.

2.2.1 Trial Course Design

The project chosen for the trial course was raytracing. Raytracing is a technique for synthesizing

images by following hypothetical photon paths [18], [27], [56]. A raytracing system models a virtual viewer

looking upon a collection of geometrically-specified objects in Euclidean three-space. A virtual rectangular

viewing screen is interposed between the viewer and the objects. The screen is oriented so that a vector that

is normal to the screen and based at the center of the screen passes through the eye point of the viewer. The

screen is considered a two-dimensional lattice of equally spaced points representing pixels or sub-pixels of

the final projected image. The raytracing algorithm createsthe image by firing a virtual photon from the

viewpoint through each lattice point. If the photon hits an object, it may bounce and hit additional objects.

The color assigned to the lattice point is a weighted sum of the colors of all objects hit by the photon. Many

commercial rendering systems for special effects are based upon raytracing [42]. In addition to being an

interesting, real-world problem, the development of a raytracing system provides an ideal mechanism for

exposing the student to the object-oriented (OO) paradigm.The system implementation can be initiated in an

3



www.manaraa.com

imperative style, but it quickly becomes apparent that the most reasonable way to represent the interactions

of photons or rays with different types of geometric objects is to associate functions for calculating ray-

object intersection points and surface normal vectors witheach type of object. The overall design draws, in a

very natural way, into the object-oriented paradigm. The benefits of inheritance and polymorphism are clear

from the onset of their introduction. Because the systems naturally grow large and complex very quickly,

techniques for partitioning, testing, and large-scale development are well-received.

2.2.1.1 Phase I - Fundamentals

Students who entered CPSC 215 at the time of this course typically had completed the CS I and

II courses using Java and had had little or no exposure to the Clanguage or to basic concepts of computer

graphics. Three weeks of the fifteen-week course, includingboth in-class lecture and assigned projects, were

devoted to fundamentals of the C language, the standard library, and their use in the representation, storage,

and retrieval of image data. These topics were introduced inthe context of several assigned 2D image trans-

formation problems, including converting color images to grayscale; digital half toning (converting grayscale

to black-white); “colorizing” grayscale movie frames; andreformatting standard television images to dis-

play on High Definition monitors. Guidance, in terms of pseudocode algorithms and code fragments, was

provided in class to assist students in solving the assignedproblems.

2.2.1.2 Phase II - Raytracing Structure

In the next five weeks of the class, the raytracing problem wasdescribed and the key elements

required in its solution were introduced, including the useof structures, unions, pointers, and recursion. A

breadth-first approach with repeated refinements was employed. In this way the students were quickly able

to render simple images and then refine them using more sophisticated treatments. Key to success was a

carefully defined structure to represent the “objects” in the scene. A typical example is shown in Code 2.1.

Note the extensive use of function pointers. These functionpointers lead to the object-oriented paradigm by

allowing a geometric shape in the image to have associated functions by storing pointers to those functions.

A color is specified as a triple of red, green, and blue (RGB) intensities in the range [0,255]. The

functionsambient() anddiffuse() return coefficients representing the degree to which the surface of the

object reflects red, green, and blue components of incident light. These functions typically return constant

values, but the functional representation supports procedural textures such as a checkerboard floor. An ob-

ject’s hits() function is responsible for determining if and where a givenray intersects this object. The

4



www.manaraa.com

struct object {

struct color (*ambient)();

struct color (*diffuse)();

struct color mirror; /* weight on specular */

void (*get normal)();

int (*hits)();

union {

struct ball ball;

struct floor floor;

} config;

struct object *next;

Algorithm 2.1: Fundamental Object Structure

get normal() function returns a unit vector normal to the surface at any point. In Phase II, only two types

of objects, a sphere (called “ball”) and an infinite horizontal plane (called “floor”), were defined, and colors

were limited to grayscale.

A call to trace a ray from a virtual eye point through a pixel begins with an iteration over the object

list to find (via hits()) the object whose ray-object intersection is closest to thevirtual eye point. The

color of that pixel is set to the weighted sum of ambient, diffuse, and specular illumination components. The

ambient component is a constant unless a procedural textureis in use. The diffuse component is proportional

to the cosine of the angle between the surface normal at the intersection point and a vector pointing toward

the scene light source. The specular (reflective) componentis computed recursively. The incident ray is

reflected about the surface normal, and a recursive call to raytrace is made with the intersection point as the

new virtual eye and the reflected ray as the new ray direction.The returned value from the recursion is the

specular component. Pseudocode for the raytracing algorithm is shown in Algorithm 2.2.

Requirements for the first raytracing project were flexible:

1. The inclusion of at least one light source, two spheres, a checkerboard planar surface, and a sky.

2. The illustration of shadows, diffuse and specular illumination, and anti-aliasing through sub-pixel sam-

pling.

3. The production of an image of at least 1024x768 pixels withan aspect ratio 4:3, with no ratio-induced

distortions.

Some impressive images resulted from this phase: Figure 2.1.

5



www.manaraa.com

color_t raytrace (ray_t ray, float ray depth){

if (ray depth > max depth) return(black);

best distance = +∞;
for (each object in the scene){

compute ray-object intersection point, pt;

if (distance(pt,viewpoint)< best distance){

record object and pt;

update best distance;

}

}

if (no object intersected) return(background color);

add best distance to ray depth;

set color to ambient color for this object;

get normal for this object at pt;

for (each light in the scene){

if (pt not in shadow){

compute diffuse component for this pt/light;

add diffuse color to color;

}

}

if (object has a specular component){

compute reflected ray;

reflected color = raytrace (reflected ray, ray depth);

add reflected color to color;

}

return(color);

}

Algorithm 2.2: Pseudo-code for raytracing

2.2.1.3 Phase III - Raytracing Refinements

In the next four weeks of the course, the design of the raytracing system was extended to include

refraction, stereographic projection, and new object types. New types included boxes, quadrics, and surfaces

of revolution. Algorithms for the defining functions,hits() andget normal(), were derived in class, but

the implementation was left to the students. These additions to the task naturally generated discussions of

new tools and techniques including dynamic memory allocation, non-trivial linking, and modular program

design. With all associated functions grouped in separate files, students found “makefiles” to offer a welcome

relief rather than a burdensome extension. Requirements for the second project were again brief and flexible:

1. The inclusion of at least 3 light sources, 2 boxes, 2 spheres, a planar surface, and a sky (unless the

scene is completely enclosed by a sphere or box).

2. The illustration of shadows, diffuse and specular illumination, and anti-aliasing through sub-pixel sam-

6



www.manaraa.com

(a) By student S. Duckworth (b) By student T. Nguyen

Figure 2.1: 2002 CPSC 215 Phase II Student Renderings.

pling.

3. The production of a color image of at least 1024x576 pixelswith an aspect ratio 16:9, with no ratio-

induced distortions.

2.2.1.4 Phase IV - Scene Specification Language

To permit complex scenes and animations to be defined using external, file-based specifications, a

week was spent on additional I/O techniques and the design of an integrated parser. The scene specification

language suggested was a highly simplified synthesis of several current formats [66]. Students were free to

extend the language, and several did. In the final two weeks, source code simplifications available through the

use of C++ were discussed. Because OO is a design paradigm, not a language, and because the students had

a large OO design in front of them, the transition was not viewed as a major one. In particular, simplifications

available in vector operations (spatial and color) throughoperator overloading and the advantages of derived

classes were easily described. The use of C++ for the final raytracing project was optional, and several took

that option.

2.2.2 Discussion

The impressive images and encouraging evaluations of this course and all otherτέχνη results are

in Chapter 7. Some concerns about the size of the problem for athree-hour course were raised and later

addressed by moving the raytracer to a four-hour course (Computer Science II) with its prerequisite course

7



www.manaraa.com

introducing image creation and manipulation. Another possible solution is the use of teamwork. Strongest

supporters of cooperative learning [36], [76] admit to drawbacks, and thus any teamwork should be structured

in such a way as to encourage peer learning and discourage weaker students from “hiding” in large, strong

teams without genuinely getting involved.

While increased motivation was an expected result from the new course, a surprising aspect was the

extent of extra work the students actually performed, in many cases more than our graduate students who

also write raytracing programs for an advanced graphics course. Several of the undergraduates investigated

advanced techniques, such as new object geometries, texturing, and 3D stereograms, on their own. These

features were far beyond the requirements for the assigned projects.

2.2.3 Conclusions

A benefit of theτέχνη project is the opportunity for faculty to engage undergraduates with discus-

sions of the research that carries their enthusiasm. We conjecture that the benefits to the students will arise not

only from the problem-solving orientation of the instruction and the exposure to the vitality of real research

problems but also from a newly induced vitality in the instructors.

The positive experiences (discussed more in Section 7) fromthis course and the observations from

the DPA program led to introducing students to computer science using theτέχνη approach. While raytracing

may seem like a complex topic for second-year students, in fact first-year students now perform raytracing

in the four-hour, second-semester CPSC102 course. Unlike the trial CPSC215 course, students in CPSC102

have experience in C and in image processing, and as a result,the class is equipped from the first day to focus

on appropriate data structures and algorithms for processing three-dimensional geometry.

8



www.manaraa.com

Chapter 3

Curriculum

3.1 Educational Goal

Research underτέχνη led to the synthesis of a new direction in computer science education that

draws upon educational theory and epistemology to address problems commonly observed in undergraduate

computing programs, in particular, high drop rates, lack offaculty interest in introductory courses, slow

development of students, and lack of participation by womenand minorities. This new direction has led to

the design and implementation of a curriculum in computing that embodies these principles.

Before discussing a new curriculum for computer science, wemust identify the goal of the curricu-

lum. The obvious answer is to produce good computer scientists. Unfortunately, this stated goal is rather

vague, owing to the use of the word “good.” However, it is generally agreed that a good computer scientist

is skilled in computational problem solving: writing, reading, analyzing, testing, and debugging computer

programs and algorithms. Less obvious but important skillsinclude the ability to work with and learn from

other computer scientists, the creativity to conceive new research directions, as well as the ability to pursue

such directions. To generalize, a computer scientist must operate at the top of Bloom’s taxonomy: analy-

sis, synthesis, and evaluation. Analysis is introduced immediately in computer science with pattern seeking,

organization of code, and understanding of hidden parts. Evaluation is important in data structures for com-

paring approaches and choosing the appropriate solution for a given problem. Finally, synthesis is employed

in research by using old ideas to create new ones, by generalizing from given facts, and by predicting and

drawing conclusions based on data.

9



www.manaraa.com

3.2 Problem

The decision to redesign any curriculum naturally flows fromthe identification of particular prob-

lems with current approaches. With the goal and definition ofcomputer science education in mind, what

issues does this curriculum redesign address? While this approach likely has flaws of its own, the issues it

seeks to address are illustrated by the following symptoms:1) high drop rates, 2) lack of faculty interest in

teaching lower-level courses, and 3) slow development of students into good computer scientists.

For each issue, the symptom will not be alleviated without addressing the greater cause. For exam-

ple, what causes high drop rates? Lack of programming experience, poor math skills, and poor environment

have all been linked to the lack of retention in Computer Science [55]. The most obvious cause is that some

students do not enjoy or are not capable of doing computational problem solving. Since professors wish

for students to be happy with their fields, it should be considered a positive occurrence when such students

transfer to majors better suited for them. Unfortunately, not all students who believe they cannot do (or do not

like) computer science base their decisions on valid evidence. Often, first-year students, especially students

with no programming experience, feel overwhelmed and alonein the midst of vast amounts of new infor-

mation. The plight of these so-called “at risk” students [55] is exacerbated when faculty discourage student

interaction to prevent cheating. This lack of socialization has been linked to drops [68], since the isolation

leads some students to believe that they are the only ones struggling and afraid to ask for help, only to fall

further and further behind. Other students jump into programming with alacrity, only to become frustrated by

toy programming assignments that do not solve any useful problems and do not produce impressive results

for the amount of time invested. In this point-and-click generation, students can be easily discouraged by the

basic beginnings used to form the foundation of later education. The problems of both of these groups, the

overwhelmed and the frustrated, need to be addressed withina single educational environment.

Lack of faculty interest in lower-level courses can arise from multiple sources. First, faculty, like

students, become bored by toy programs, but devising more interesting assignments to reinforce computer

science concepts is difficult, especially for early programming courses. Additionally, students in lower-level

courses often require a taxing amount of out-of-class support. Finally, lower-level courses seldom benefit the

instructor’s current research but instead draw needed timeand energy away from his or her research interests.

All of these problems should be taken into account when a curriculum is prepared.

Finally, slow (or non-existent) student development toward becoming good computer scientists is

partially a symptom of the problems with student support. Toy programs, cut-and-paste code, and poor

10



www.manaraa.com

motivation promote laziness and apathy in students, harming the educational environment. When the students

are engaged and excited about learning, their academic development will greatly improve. An additional

factor is that not all attributes of good computer scientists are currently emphasized in typical curricula.

Areas such as teamwork, creativity, and research skills should receive more attention in order to encourage

breadth in computer science as well as depth.

3.3 Curriculum Structure

With the stated issues in mind (student isolation, frustration, boredom, and faculty burden), the goal

of τέχνη (and more broadly, Quest-Oriented Learning) is tocreate a focused, social learning environment

that motivates, educates, and broadens students at all levels without undue burden to faculty. With the proper

environment and problem set, students can become excited and inspired to seek the most out of a course

without a burden on the instructor to manufacture the desirein the students.

Eachτέχνη course is structured by a large, semester-long graphics project. The graphics project is

selected to fit concepts appropriate for the course level andcontent and is broken into phases. From the first

day, the target project is the focus of each phase of the project and each new piece of information. From the

first phase, students are not provided with starter code or advanced libraries, since they are building mental

models of computing. In line with constructivism, no advanced concepts such as objects and abstraction

are introduced before students can fully understand fundamental building blocks such as looping, branches,

and memory allocation [51]. Research indicates that not only are students experiencing difficulty grasping

complex abstract topics, but basic programming structuresare receiving weakened coverage to afford time to

explore object-oriented constructs. Students experiencedifficulty understanding variables, parameters, and

loops. “Why should we believe that they can construct a viable model of an object such as a radio button?”

[6].

The choice of graphics as the central focus of the projects isnot arbitrary. Graphics problems afford

special educational experiences not offered by other studies. Besides the obvious visual feedback afforded by

graphics projects, these projects also leave room for creative expression, demonstrate the need for advanced

mathematics, meet students’ expectations of visual components, prepare students for the increasingly visual

world, and tap into areas of problem-solving otherwise untouched. Creative expression is emphasized by

the fact that some graphical results are technically impressive but artistically boring. The visual component

present in computer graphics adds a dimension to the evaluation of programs. “Unlike other areas of computer

11



www.manaraa.com

science, algorithms must be considered not only for time andmemory usage, but for their visual effect” [77].

This opening for variation among “correct” answers lets thestudents hone their own creative skills, and link

left-brain and right-brain activity, the scientific with the aesthetic.

Graphics projects reveal the necessity of advanced mathematics, such as calculus, linear algebra, and

trigonometry, through exploration of the relationship between mathematics and the form, location, orienta-

tion, and motion of objects in the physical world. Without tangible problem focus, such topics in mathematics

often seem irrelevant to students’ lives.

Graphics meet the expectations of a generation of students accustomed to video games and hand-

held computers. Graphics projects create the interest thatGraphical User Interfaces are meant to create [62],

without introducing the complexity of object-oriented programming and abstraction. Since first-year students

are best suited for concrete knowledge [59], it is best to avoid beginning CS with abstraction. See Chapter 5

for an in-depth discussion of the selection of the type of theintroductory language.

Cunningham exposes the visual aspects of problem solving that are often overlooked by the omission

of required graphics education, including mental visualization, kinesthetic (movement) analogies, aesthetics,

physical modeling, and the ability to visually communicate[12]. He points out that “visual communication

is simply not part of their general education pattern. We uselittle visual communication in our teaching

except for the diagrams that help students see the patterns of our processes; our students use almost no

visual communication in expressing their learning.” Cunningham makes the case that graphics courses teach

and reinforce problem solving skills, and similarly we maintain that problem solving skills are taught well

through graphics. Thus, Cunningham’s approach is to emphasize problem solving in graphics courses, while

we emphasize placing graphics in problem solving courses.

3.4 Educational Approach

3.4.1 Foundation

The educational foundation of theτέχνη curriculum draws from the work of Piaget in developmental

theory and cognitive constructivism, and Martinez in intentional learning, as well as from problem-based

learning reinforced with visual feedback.

Starting with cognitive constructivism, Piaget’s geneticepistemology describes the natural develop-

ment process of children. The progression in development isa natural part of all people, young and old, and

12



www.manaraa.com

it is important for education to accommodate this innate learning process. Piaget breaks down the process

as he observed it in children. A baby begins the exploration of his environment using simple sensorimotor

skills called schemas. These schemas are the starting pointfor the creation of knowledge. For any individual,

learning begins at some level that will be built upon.

1. The individual applies the schema to different objects: assimilation. For example, a baby applies the

same action to different objects; e.g. after putting a rattle in his mouth, he may try putting a watch

into his mouth. Similarly, when a person is confronted by a new object, that person draws from his old

experiences to determine how to deal with the object. For example, if the object is protruding from the

center of a door but does not look like a typical doorknob, theperson will still attempt to rotate it and

pull the door open.

2. When a schema does not work for a given object, the individual tries an adapted version to accommo-

date the object: accommodation. If the baby has a beach ball that cannot fit into his mouth, he may

instead grab it and drool on it. Similarly, when an adult discovers that the door handle does not respond

to turning and pulling, he attempts various different methods of unlatching, such as lifting, pressing, or

tilting the handle, until he has appropriately accommodated the new door handle.

Using a combination of assimilation and accommodation, babies (and people) advance their knowledge and

competence [58].

Piaget’s genetic epistemology indicates that the learner is not a blank slate to be dictated upon, as

once thought. Instead, even a developing toddler experiments and reasons out new information for him-

self. When confronted with unfamiliar objects, the individual constructs a mental model to assimilate or

accommodate it. This development process is an active acquisition of knowledge, known as constructivism.

“Constructivism is a theory of learning which claims that students construct knowledge rather than merely

receive and store knowledge transmitted by the teacher” [6]. Piaget contributed much to creating the con-

structivist development model. The theory probably owes its origins to Immanuel Kant [37] and Jean-Jacques

Rousseau [65]. Kant believed that our innate mental structures are used through the interpretation and or-

ganization of experiences. Rousseau suggested that human genes were the basis of intellectual development

and that interaction with the environment was the basis for constructing understanding. As with all learners,

computer science students experience and interpret the results of their work and build personal models of

the behavior of objects of interest. Sometimes students have misconceptions that are later exposed through

contradictory results. Gradually students correct their mental models, moving closer to an accurate model,

13



www.manaraa.com

based on their experiences. An “accurate” model is a conceptual framework that facilitates interaction with

the environment and prediction of outcomes.

A goal for the curriculum is to support this learning processthrough the exposure to real-world

problems in order to facilitate the construction of knowledge. Such problems allow students to test and adjust

mental models while developing new computational solutions through assimilation and accommodation. This

constructivist learning process is well supported by problem-based learning (PBL). Since its inception in

the 1960’s as a way to improve training of physicians [5], problem-based learning (PBL) has been widely

recognized as a successful method of improving retention and skills acquisition. In computer science, PBL

is employed to teach subjects as varied as design patterns [11], assembly language [78], artificial intelligence

[10], and CS1 [28]. Rather than having educational conceptsdrive the curriculum, PBL instead uses realistic

problems to drive the educational experience. For example,people do not study various types of door latches,

but instead solve the problem when they are confronted by a closed door with a new latch that they are

motivated to open. In other words, problem-based learning “is a learner-centred approach in which learning

episodes are motivated by an initial problem that bears someresemblance to ‘real world’ problems” [28].

With this approach, learning occurs when students encounter roadblocks on the path to the final goal (such as

a large class project), and they are forced to make accommodations to circumvent the roadblocks. Through

PBL, students experience opportunities for constructing new knowledge.

While students can and do learn computer science in ways completely counter to PBL, PBL is a

better approach to motivate that learning. For example, people can learn Japanese by enrolling in a university

course and memorizing vocabulary and grammar. However, these people would learn much more quickly

and be much more serious about the process if they moved to Japan for a year. Suddenly their learning is

prompted by a pressing need to communicate. After a year of studying in Japan, a person may not know as

many grammar rules as his textbook-studying counterpart, but he will be much more fluent and capable of

conversation. This is not to say that learning grammar and vocabulary is unnecessary. Quite the contrary,

the person living in Japan will be more driven to self study than someone simply trying to pass a language

class. In the same way, the immersion process invoked by PBL better prepares students for work in computer

science and even encourages them to study on their own.

Theτέχνη project uses constructivism as a theoretical basis for learning and problem-based learning

to motivate the learning experience. Fundamental tenets ofthe approach are that a visual problem domain

will most quickly capture the attention and interest of students who have grown up in a society that is in-

creasingly visually oriented, that a connection between scientific and artistic components will stimulate both

14



www.manaraa.com

deductive thought and creativity, and that toy problems would be of little value in effecting the principal

desired accommodation, an ability to solve real problems.

We wish to move students closer to becoming intentional learners. “We use the term intentional

learning to refer to cognitive processes that have learningas a goal rather than [as] an incidental outcome”

[7]. Rather than have students work toward the goal of passing a class, students should be on a quest to

become experts in computer science. Another way to put it is that an intentional learner is a person who

learns when outside factors make it unnecessary to do so. Although these types of students seem rare, it is not

wholly unrealistic to suggest that a good curriculum can cultivate intentional learners. Every child begins life

enthusiastic, persevering, and ready to learn. A toddler works hard to improve his pronunciation, his ability

to walk and run, and his understanding of the physical universe around him. Somewhere in life, students

lose the desire to learn, possibly due to unmotivated, seemingly unnecessary busy work. Nevertheless, at the

college level, most students choose for themselves what they wish to learn and can again become enthusiastic

about the experience.

3.4.2 Approach Clarification

After establishing the basis ofτέχνη and describing its components, we must point out whatτέχνη

is not. First,τέχνη is not a full implementation of constructivism. Constructivism taken to its logical end

converts the teacher into a facilitator while asserting that there is no absolute truth, merely more or less useful

models. While it is important for students to reason out problems on their own, college professors hold a

wealth of information that should be passed onto the students. Obviously, teachers can lead students toward

the solution, but sometimes in classroom environments, there is not enough time to have students rediscover

for themselves everything that years of work in the field haveuncovered. Also, especially in computer

science, there is absolute truth in certain aspects of the discipline, e.g., how a computer stores data, what

happens during execution, etc. While this approach is not a full adaptation of constructivism, the key concept

that students build knowledge incrementally working toward an accurate model is foundational to the choice

of incremental semester-long projects that begin at the bottom and build upward.

Theτέχνη curriculum is also not a full implementation of PBL. Once again, τέχνη draws the key

ideas from PBL without applying it in ways some predecessorshave. This implementation is in line with

the problem-centered learning variation [43], in which teacher is a resource instead of a coach, and the

information is presented to the students in an organized way, but all the learning revolves around the problem.

Finally, theτέχνη curriculum pulls important key points from Margaret Martinez’s System for Inten-

15



www.manaraa.com

tional Learning and Progress Assessment (SILPA), but it is not a full implementation of intentional learning.

SILPA has the following six features: 1) domains of knowledge: enunciation of what an expert in the field

knows and can do, 2) multidisciplinary lesson plans, 3) roledifferentiation: allow the students to be learner,

teacher, and researcher, 4) practice and feedback 5) progress assessment, 6) multidimensional interaction: stu-

dents manage the learning process to achieve their goals [47]. The presentation of the domains of knowledge

exists inτέχνη by the statement of a real-life problem that is the goal of thegiven course. Role differentiation

occurs in pair design, reports, and open problem discussion(See Chapter 5 for explanation of these support-

ing features). Practice and feedback are provided through the course and laboratory assignments, and nearly

instantaneously with online coding practice. Progress assessment is always available to students. Neverthe-

less points 2 and 6 are not incorporated because we believe they would detract from the overall framework,

the problem scaffolding that we supply.

This new approach fuses key points from Piaget, Kant, Rousseau, Martinez, PBL, and the visual

problem domain into theτέχνη learning approach with exciting results, as it is used to create a focused, social

learning environment that motivates, educates, and broadens students at all levels without undue burden to

faculty.

3.4.3 Quest-Oriented Learning

3.4.3.1 Name

There is no single approach on which theτέχνη curriculum relies. Beginning with the union of

art and technology,τέχνη has grown to become a synergistic blend of problem-based learning, intentional

learning, constructivism, careful problem selection fromthe visual domain, and developmental theory. For

a name encompassing all the components of this approach, butgeneralized for other learning environments,

we suggest “Quest-Oriented Learning” (QOL).

Understanding the name choice requires understanding precisely what a quest is. A quest is de-

fined as “A chivalrous enterprise in medieval romance usually involving an adventurous journey” [Webster’s

Seventh New Collegiate Dictionary, 1965], “a seeking or inquiring” [Webster’s II New Riverside Dictionary,

1984]. The concept of a quest implies a journey with an unknown path taken to achieve or obtain some-

thing. When a quest is begun, the processes that will be required to complete are unknown. There will be

skills to acquire, tools to obtain, roads to discover, challenges to face, and obstacles to overcome. There is

no handbook completely covering all the information neededto achieve the goal. Instead, the traveler must

16



www.manaraa.com

find direction from a multitude of sources and steadfastly struggling through each challenge to reach the final

destination. A quest is an active process that cannot be replaced by a monologue from someone who has

completed a quest of his own. Rather, the traveler is simply inspired by previous achievers to embark on the

journey.

In terms of theτέχνη curriculum, how is becoming a computer scientist a quest? Becoming a good

computer scientist is not something that can be handed to thestudents through lectures or textbooks. If

success could be achieved through the memorization of listsof principles, textbooks would be certainly more

than adequate, but there are skills as well as new thought processes that the students must develop. The

educator inspires and equips the student to begin such a journey, but learning is an active process that the

students perform. To obtain the knowledge, skills, and experience needed to excel in any field, students must

learn to actively seek these components in the manner of a quest.

QOL incorporates PBL obviously. Additionally, the studentgoing on a quest must be an intentional

learner. He has chosen to undertake it through his own interest which spurs him to go beyond the require-

ments in order to learn more. As he works toward his goal, he learns what is necessary and builds tools

incrementally, from the ground up, or in a constructivist manner. With the schema he has at the beginning, he

gradually develops new skills necessary, in line with Piaget’s Genetic Epistemology. Visual problem solving

is incorporated, since the hero of the quest is operating in the real world with visible results to his actions.

The quest is a real-life struggle. The more educational environments model the real world, the better the

resulting education.

3.4.3.2 Components

Broadening the concept of QOL,τέχνη can be considered an application of QOL to undergraduate

Computer Science Education. It is highly likely that other fields and levels of education could apply QOL to

bring about improved student attitude, performance, and enthusiasm. Other applications of QOL should hold

to the same principles present inτέχνη.

The goal of Quest-Oriented Learning is to create a focused, social learning environment that moti-

vates, educates, and broadens students at all levels without undue burden to faculty. QOL implementations

should include this goal and the following components:

• A Fundamental Project that is:

– Large enough to require multiple phases.

17



www.manaraa.com

– The focus of the entire course of education.

– A real-world problem that incorporate visual problem solving.

• Opportunities for excellence above covered material and requirements.

• Opportunities to research new information and teach others.

• Encouragement for immediate commencement of the quest.

• Opportunities to repeatedly hone newly-acquired skills.

• Open problem discussion amongst others on the quest.

• Use of external resources to solve the basic project.

18



www.manaraa.com

Chapter 4

Related Work

τέχνη courses are structured by semester-long graphics-relatedproblems to be solved by students

without starter code or special libraries. While no introductory courses in computer science follows this

model, there are those that rely on semester-long projects,and those that use graphics projects. Below is a

literature review of these categories.

4.1 Semester-Long Projects in Introductory Courses

Most work with structuring courses around a semester-long project has been done with upper-level

and graduate courses. A handful of papers discuss the viability and benefits of semester-long projects in CS1

and CS2. Bareiss’s desire for CS1 students to have final projects that they could tackle entirely by themselves

and yet were complex enough to be interesting, enjoyable, and challenging led her to assigning the sequential

creation of the Othello game [4]. While no results are discussed and the display type of the game is unclear,

the paper supports the belief that CS1 students can and should learn through large, realistic projects that

demonstrate the benefits of good programming techniques andinitiate student creation of a portfolio. Outside

of τέχνη, Bareiss’s incorporation of a semester-long project into CS1 appears to be unique.

Semester-long projects have been used in some CS2 courses, including a maze generation and traver-

sal program [73], a five-phase day planner application [70],and a tennis competition bracketing system [26].

The maze generation/traversal program incorporates matrices and linked lists,and provides visual feedback

with command prompt ASCII displays of the maze and chosen path. The day planner application grew out of

the instructor’s concern that student assignments were unconnected to the real world and required no mainte-

19



www.manaraa.com

nance, review, or real testing. Thus, students were assigned a realistic program that had to be maintained and

updated throughout the semester. The tennis tournament program was a semester-long task, but four other

toy programs were interlaced throughout the semester.

All four courses recognized the need for “real-world” problems presenting the challenges of code

design and maintainability while grabbing the attention ofthe students.

4.2 Graphics in Introductory Courses

In most cases, graphics are infused into introductory courses to motivate students to learn from fun,

challenging, “real” problems. Many of the projects involveimage processing, which seems to be a tried-and-

true method of introducing CS concepts. In one study [74], student enjoyment was charted as “very high”

in a CS1 course taught using image processing. Using the JavaSwing API, students created “MSPaint-like”

effects, first with grayscale images and then with color images.The students were required to implement 15

effects and were given compiled image extraction and display libraries that provided them with 2D arrays

of data to manipulate. Similarly, Burger [9] describes the classroom use of the Java Image I/O API and his

own Image class to simplify the modification of grayscale images, including intensity changes, horizontal

and vertical flip, 90 degree rotation, color inversion, conversion to black and white, histogram generation,

and various filters (blur (3x3), gauss (3x3), sharpen (3x3),and Prewitt edge enhancement). It is unclear if his

approach has been used in introductory courses.

An early proponent of graphical results, Robergè suggestsdata structures projects “intended to show

that programming projects with visual impact can be constructed from the traditional elements of a wide va-

riety of courses, in a wide variety of computational environments” [61]. His suggested projects (note card

system, presentation manager, graphics editor, digital logic circuit laboratory kit, database system, routing

utility, hypertext system, and menu system) were implemented for a text-based command-prompt display, but

they were meant to address the already growing frustration and disappointment of students in basic program-

ming assignments and instead emphasize real-world problems and visual engagement.

Another early and often-cited paper describes the use of downloaded gray-scale NASA Martian

planetary images as realistic sources of data for students to manipulate [23]. Students were provided with

functions to allow them to set single pixel values, read files, produce sounds, and manipulate bits. Given these

provided libraries, students enhanced gray-scale images (by scaling the values to be across the full spectrum),

equalized a histogram of the values, played music corresponding to the values of the pixels, and discovered

20



www.manaraa.com

(planted) covert messages in the images. These activities were suggested for the laboratory setting and are an

interesting way for students to discover useful applications of computer science.

In order to capture student attention in CS1 and CS2, Jimènez-Peris et al. explore real-world, chal-

lenging problems [35]. Although the majority of the projects suggested are graphical games (tetris, asteroids,

card games, etc.), two suggested assignments involve imageprocessing in CS1 and CS2: image edge detec-

tion and image compression using trees.

A study at Duke University found that “animations and interactive graphics generate student inter-

est and enthusiasm, which usually translates into better comprehension and mastery of the material in our

courses” [2]. Complexity of animation and visualization programs were hidden from students via provided

object classes that drove the animation process. Students manipulated “balloon” (filled circle) movements,

tracked frog (filled circle) movements, emulated a cardioverter/defibrillator monitor, built animated business

histograms, and optionally but most notably, compressed portable bitmap images (PBM format).

Although it is outside the realm of the college introductorycomputer science course, the “Fun With

Faces” [52] project educated ninth and tenth-grade students about image processing, and all students were

excited by the interesting visual effects they were able to create with pictures of themselves. Work was done

through the Scion Image program, which allows image captureand modification.

The importance and benefits of including graphics in required Computer Science courses is dis-

cussed in several papers. Hunt lists the fields that rely on image processing: “sports broadcasting, mail

delivery, military target acquisition, satellite imaging, robotics, medical imaging and the traditional print

industry” [34]. He advises the integration of image processing into existing courses and describes his Easy-

BufferedImage class, built on the Java Image processing libraries as a way to incorporate image processing

into CS1 and CS2. Cunningham and Shiflet emphasize the need for a graphics background in Computational

Sciences and suggest the use of Matlab, Mathematica, Maple,Excel, STELLA, and OpenGL to incorporate

graphics into upper-level, undergraduate courses [13].

Tashakkori utilizes graphics as a means to generate undergraduate interest in research and describes

a post-CS2 class focused on the study of digital image processing [69]. The class encourages self motivation

and identifies early on each student’s interests as they pertain to image-processing research.

All of the projects described above are aimed at educating students in an exciting and visual way that

gets their attention and challenges them to reach beyond expectations. Theτέχνη approach reaches beyond

these previous approaches by placing large projects at the center of learning and requiring students to write

all code from the ground up without the use of starter code or special libraries.

21



www.manaraa.com

Chapter 5

Implementation

The implementation ofτέχνη involves the organization of the courses into phases, the laboratory

environment, additional supporting features for the courses, and the decision of which languages to use.

Section 5.1 discusses the phases of each of the first four courses ofτέχνη, Section 5.2 discusses the Pair

Design laboratory structure and other supporting features, and Section 5.3 explains the choice of C for the

introductory language.

5.1 Course Phases

Below are descriptions of the first four courses in the Computer Science curriculum and the descrip-

tion of an additional, single-semester course covering CS1and CS2. Each course is structured around a large,

semester-long, graphical project. The projects are brokendown into as many as twenty phases (depending on

the level of the course) to demonstrate a progression. Multiple phases should be grouped into single assign-

ments. The number of actual assignments each semester is at the discretion of the instructor, as well as any

modifications to improve the project in the class.

5.1.1 Computer Science I

CS1 is structured around the implementation of a color transfer program that will apply the color

scheme from one image to another. The project will be done in phases, beginning with the simple creation of

an image file.

22



www.manaraa.com

5.1.1.1 Single-pixel image

The creation of a 1-pixel image in Portable Pixmap (PPM) format that is printed to standard out.

Required Material: text editor, C compiler, library functions, IO functions, preprocessor directives, the main

function, PPM format, binary data, ASCII data.

5.1.1.2 Large, solid image

Printing an 800 by 600 PPM format image to standard out. Required Material: variables, data types,

variable declaration, variable assignment, conditional expressions, variable incrementation, counted loops.

5.1.1.3 File copy

Reading a file (image file) and printing it back out. This phasedraws from previous knowledge and

is working toward the goal of reading in images, manipulating them, and outputting them. Required Material:

standard input, file streams, unsigned char, conditional loops, bytes, binary data.

5.1.1.4 Header parsing

Reading a PPM image file, and outputting the width, the height, and the total number of pixels in the

image. Obtaining this information requires knowledge of the image header format, unlike the mere copying

performed in the previous stage. Required knowledge: reading integers, addresses, character comparisons,

nested loops, if statements, un-reading data, error conditions, functions, function return values, boolean ex-

pressions, multiplication, test for white space, stdlib.h, ctype.h.

5.1.1.5 PPM file copy

Reading a PPM image file, printing it back out, and outputtingthe width, the height, and the total

number of pixels to standard error. Since this phase does nothave a great deal of new information, it is a

good time to re-factor the code to have better organization and a header file. Required knowledge: outputting

to standard error, addresses, pointers, header files.

5.1.1.6 Single-pass modification

Reading a PPM image file and making a modification to the colors. This phase is leading to the final

goal of modifying an image’s color scheme to match another image. The phase provides practice modifying

23



www.manaraa.com

image data and may be anything, including changing one channel’s value to be a set value, lightening or

darkening all values, converting the image to grayscale, inserting scan lines, fading the colors, monochrome,

etc. This is a phase where students can be creative or the instructor may simply choose one modification to

require. Additionally, more difficult modifications may receive extra credit. The instructoris not expected

to explain how to do each option, but instead the students should inquire after the approach. Since more

difficult modifications are worth more points, students should bemotivated to learn how to do them. Required

knowledge: information regarding the file modification thatwill be done.

5.1.1.7 Stored-data modification

Reading a PPM image file into an array and making a modification. The storage of the entire image

at one time is necessary for the final goal of reading in two images entirely and manipulating one based on the

other. Modifications to the image may now depend on knowledgeof more than one pixel at a time, such as

resizing, tiling, flip, rotation, blur, and sharpen. This isanother possible place for creativity, the improvement

of the previous phase, or combination with the next phase. Required knowledge: arrays,fread(),fwrite().

5.1.1.8 Variable input image size

Reading a PPM image file of any size into an array and making a modification. Required knowledge:

dynamic memory allocation (single dimensional or multi-dimensional).

5.1.1.9 Conversion to CIELAB

Reading a PPM image file, converting it to CIELAB colorspace,modifying the colors, and printing

it back out. CIELAB color space is a three dimensional color space in which pairs of colors at equal distances

from one another are perceived to be at equal distances from one another. It is sometimes called perceptually

uniform color space. The transformation between RGB space and CIELAB space is arithmetic using matrix

multiplication. The modification can be anything from modifying one component to produce an interesting

effect to implementing a color balancing algorithm. The matrixmultiplication for this phase may be covered

in the laboratory setting or provided to the students. Required knowledge: matrix multiplication, knowledge

of RGB to CIELAB format.

24



www.manaraa.com

5.1.1.10 Command-line input

Reading a PPM image file specified on the command-line, converting it to CIELAB format to bal-

ance the colors, and printing it back out. Use of command-line arguments is necessary for the final phase

when two images must be specified as input. Required knowledge: Command-line arguments, strings.

5.1.1.11 Color transfer

Reading in two PPM image files, converting them to CIELAB format, computing the means and

standard deviations on each file, adjusting the values of thefirst image to the values of the second based on

the paper [60], and printing out the resulting image. Required knowledge: computation of mean and standard

deviation.

5.1.2 Computer Science II

CS2 is structured around writing a raytracer: a technique for rendering realistic images by modeling

the path from a given starting point to geometrically-specified objects in Euclidean three-space. To create an

image with the raytracer, start at a specified “eye” point, shoot one or more rays in the direction of each pixel,

compute the color resulting from any intersections, and output that color.

5.1.2.1 Single-color image generation

The creation of a solid-colored, PPM formatted image file output to standard out. Although it is not

yet raytracing, the program can still be structured in a way compatible with later raytracing. e.g. Create a

raytracing function that merely fills the array with the appropriate number of pixels. Required knowledge:

arrays, array access, data (bytes) functions, binary (raw)data and ASCII output, PPM image format, and I/O

redirection.

5.1.2.2 Image of specified size

Creating an image of any specified size. Required knowledge:command-line arguments, dynamic

memory allocation, and string (char*) to integer conversion.

25



www.manaraa.com

5.1.2.3 Simplified sky

Creating an image of a sky of any specified size. Although it isa basic step, this phase introduces the

fundamental structure of the raytracer. Required knowledge: header files, forward declarations, structures,

enumerated types, function pointers, scaling, proceduraltexturing and projection (2D image location to 3D

coordinate conversion).

5.1.2.4 Spheres

Creating an image of any specified size with a sky and any number of spheres. Required knowledge:

unions, definition of a sphere, ray-sphere intersection, the quadratic equation, macros, the dot product, point

subtraction, comparing floats/doubles to zero.

5.1.2.5 Plane

Creating an image of any specified size with a sky, any number of spheres, and a horizontal floor.

Required knowledge: Ray-floor intersection.

5.1.2.6 Checkered plane

Creating an image of any specified size with a sky, any number of spheres, and a checkered floor. The

checkered floor will have two alternating colors applied procedurally. Required knowledge: Mathematical

function f loor() and modular arithmetic.

5.1.2.7 OO tracer

The use of an OO language (C++) to create an image of any specified size with a sky, any number

of spheres, and a checkered floor. Converting to C++ can be postponed, but it is not suggested. At this point,

students have experienced object-oriented programming, although it is implemented via structures, unions,

and function pointers. Staying with procedural programming from this point on will not add any knowledge,

and beginning with objects will introduce many new conceptswith ample time for practicing programming

in a new language. Additionally, an early conversion to C++ reduces the amount of code that will need to

be rewritten in C++. If C++ is introduced late in the class, the data structures class should introduce objects

or students should be advised to take an Object-Oriented class before the data structures class. Covered (but

not required) knowledge: C++ classes, C++ inheritance, virtual methods, purely virtual methods, references,

26



www.manaraa.com

static methods, destructors, operator overloading, anonymous structures, constructor initialization, default

parameters, constant member functions, typedef, iostreams, and make files.

5.1.2.8 Shadows

An OO program that creates an image of any specified size with asky, any number of spheres, a

checkered floor, and has shadows. The lights that cast the shadows will be child classes of the Sphere class.

Required knowledge: protected attributes, static local variables, and diffuse lighting.

5.1.2.9 Weighted, diffuse contribution

An OO program that creates an image of any specified size with asky, any number of spheres, a

checkered floor, has shadows, and modulates light contribution based on light source distance and angle. The

cosine of the angle is used for computing the light contribution, and will be obtained using the dot product

method. Required knowledge: distance formula, normalizing a vector, Sphere normal, and Lambert’s cosine

law.

5.1.2.10 Weighted, light contribution

An OO program that creates an image of any specified size with asky, any number of spheres,

a checkered floor, shadows, distance/angle dependent lighting, and overall light intensity attenuation with

distances. Although the attenuation of light is not necessary, the addition of a double variable tracking the

distance light has traveled is necessary for specular lighting. (If light is not attenuated with distances, the

ambient contribution could be reduced. Either approach is fine.) Required knowledge: quadratic attenuation

of electromagnetic radiation.

5.1.2.11 Reflectivity

An OO program that creates an image of any specified size with asky, any number of spheres, a

checkered floor, shadows, distance/angle dependent lighting contribution, overall light attenuation, and spec-

ular reflectivity. Reflectivity is produced in a raytracer bybouncing rays off reflective objects and recursively

tracing their paths. Required knowledge: bouncing a ray with the law of reflection, recursion.

27



www.manaraa.com

5.1.2.12 Anti-aliasing

An OO program that creates an image of any specified size with asky, any number of spheres, a

checkered floor, shadows, distance/angle dependent lighting contribution, overall light attenuation, specular

reflectivity, and anti-aliasing. (Anti-aliasing is the technique of minimizing the distortion artifacts known

as aliasing when representing a high-resolution at a lower resolution.) The edges of the spheres, and the

reflections in them may have sharp, stair-stepped edges thatdo not adequately represent the appropriate

curved shapes. Anti-aliasing techniques will smooth the edges in the images. The method of anti-aliasing

used here is to capture multiple samples for each pixel by using pseudo-randomly jittered sample points as

ray directions through each pixel. These jittered traces are averaged to determine the final pixel value. The

result of using the average of multiple, jittered traces is ablended final pixel value that smoothes transitions

among colors in the image. The method for generating the random sample points per pixel may be provided to

the students to reduce complexity. Covered knowledge: random number generation, a method of generating

random 3D points that are restricted to a small, 2D plane segment (pixel).

5.1.2.13 Box generation

An OO program that creates an image of any specified size with asky, any number of spheres, any

number of boxes, a checkered floor, shadows, distance/angle dependent lighting contribution, overall light

attenuation, specular reflectivity, and anti-aliasing. Boxes in this raytracer are defined as 3D cubes whose

sides are aligned with the x, y, and z axes. Thus, a box is defined by two x,y,z coordinates: a minimum xyz

value designating the left, lower, near corner, and the maximum xyz value designating the right, higher, far

corner. Required knowledge: a fast ray-box intersection algorithm, comparison of doubles.

5.1.2.14 Linked-list object storage

Changes the storage of the objects in the scene to a linked list. The purpose for this data structure

alteration is support for the next phase, in which the objects in the scene are read from a file. Required

knowledge: linked lists, iteration.

5.1.2.15 Input file scene specification

A description of the scene to raytrace is read in from a file. Optionally, students may use the input

operatoroperator>> to read in information. Required knowledge: file I/O, and optionally friend functions

28



www.manaraa.com

and the input operator.

5.1.3 Data Structures

The course titled Algorithms and Data Structures is structured around the implementation of photon

mapping: an augmentation to a raytracer that supports global diffuse illumination with diffuse color bleeding,

caustics, and participating media. The first part of photon mapping is emitting photons from the lights into

the scene and storing them when they hit non-reflective objects. The second part is rendering the scene using

statistical techniques to extract lighting information from the maps. Photon mapping specifies sampling of

photons mapped in 3D space, which specifies use of kd-trees (balanced or unbalanced), maxheaps, and use of

sorting algorithms. Students will implement photon mapping to produce diffuse inter-reflections and caustics.

5.1.3.1 Random array-based map

Lighting with a photon map composed of photons (in an array) randomly-placed on a surface. The

benefit of randomly-placed photons is the ability to get visual results from the beginning before the entire

algorithm is implemented. Required knowledge: random numbers, beginnings of runtime complexity, nearest

neighbor function, illumination algorithm.

5.1.3.2 Array-based unreflected photon map

Lighting with a photon map composed of unreflected photons from a single point light stored in an

array. The runtime will still be remarkably slow. Required knowledge: photon emission algorithm.

5.1.3.3 Array-based, unreflected photon map with heap utilization

Lighting with a photon map composed of unreflected photons inan array traced by nearest neighbor

with a maxheap. Required knowledge: heaps and binary heap structure, complexity

5.1.3.4 Unreflected photon map with kd-tree and heap utilization

Lighting with a photon map composed of unreflected photons stored in an unbalanced kd-tree. Re-

quired knowledge: kd-tree, complexity

29



www.manaraa.com

5.1.3.5 Basic photon mapping

Lighting with a photon map composed of photons that have beenreflected, transmitted, or absorbed

using Russian roulette to statistically determine the fateof each photon. If 50% of photons are absorbed

after the first intersection, another 50% of those reflected or transmitted should be absorbed after the second

intersection. Required knowledge: use of reflection and refraction, color bleed.

5.1.3.6 Photon mapping with projection map

Lighting with a photon map composed of photons that we tracedbased on a projection map. The

projection map limits photons emitted to directions that will lead to an intersection with an object. Required

knowledge: matrices

5.1.3.7 Balanced kd-tree photon mapping

Lighting with a photon map that is a balanced kd-tree. Required knowledge: balancing algorithm.

5.1.3.8 Photon mapping with caustics

Lighting with a photon map and a caustic photon map. Causticsare effects caused by light passing

through a refractive object and focusing to a strong intensity that causes highlights on another object. A large

number of photons should be emitted toward refractive surfaces to generate good caustics. A separate caustic

photon map should hold the resulting photons.

5.1.3.9 Photon mapping with ellipsoid nearest neighbor algorithm

More accurate lighting effects are achieved by using an ellipsoid obtained by compressing the light-

ing sphere in the direction of the surface normal. This modification means that photons incorrectly used at

edges and in corners will be minimized. Required knowledge:compression of sphere in the direction of the

normal.

5.1.3.10 Photon mapping with filtering

More accurate lighting effects are achieved through use of a 2D Gaussian filtering. Filtering reduces

blurriness and leaked photons by increasing the weight of photons that are close to the point of interest.

Required knowledge: Gaussian filters

30



www.manaraa.com

5.1.3.11 Photon mapping with multiple lighting types

Lighting with multiple lights and varying light types. Required knowledge: methods of emitting

photons from different light shapes.

5.1.3.12 Photon mapping with participating media

Inclusion of participating media, such as fog. This topic will likely need to be an optional challenge

for more advanced students and involves the creation of a volume map and use of ray marching and a volume

radiance estimate.

5.1.4 Object-Oriented Design Course

The course titled Tools and Techniques for Software Development, or CS4, is structured around the

creation of a GUI-based, networked chess game, using Java.

• ASCII checkerboard Phase “zero” can be completed as the firstlaboratory assignment. It is the ASCII

printing of a set of checkers pieces with “x” for black piecesand “o” for white. This phase is more

or less the Java “Hello, World!” program, but it already getsstudents thinking about board layout.

Required Material: Introductory Java, main method.

5.1.4.1 GUI-based checkerboard

The creation of an empty, GUI-based checkerboard. RequiredMaterial: Java (Swing) graphics,

inheritance, overriding methods, invoking parent methods.

5.1.4.2 Flat, colored pieces

The creation of a GUI-based checkerboard set correctly withcolored, filled circles. Required mate-

rial: Graphics2D drawing tools.

5.1.4.3 3D pieces

The creation of a GUI-based checkerboard set correctly withsmooth, 3D-looking pieces. Required

knowledge: Anti-aliasing command, gradient paint tool.

31



www.manaraa.com

5.1.4.4 Moving pieces

The creation of a GUI-based checkerboard that allows piecesto be dragged to any square. Required

knowledge: Mouse events.

5.1.4.5 Legally moving pieces

The creation of a GUI-based checkers game that allows piecesto be moved to valid move locations

(diagonally forward). Turns do not matter yet. No new knowledge is needed.

5.1.4.6 Legally playable pieces

The creation of a GUI-based checkers game that allows piecesto be moved or singly-jumped legally.

Turns do not matter yet. No new knowledge is needed.

5.1.4.7 King creation

The creation of a GUI-based checkers game that allows piecesto be moved and singly-jumped, and

crowns pieces that reach the last rows. Turns do not matter yet. Required knowledge: A way to draw stars on

pieces.

5.1.4.8 King plays

The creation of a GUI-based checkers game that allows piecesto be moved, singly-jumped, and

crowned, and allows king plays. Turns do not matter yet. No new knowledge is needed.

5.1.4.9 Forced multiple jumps

The creation of a GUI-based checkers game that allows piecesand kings to be moved, jumped,

crowned, and requires multiple jumps to be completed. Turnsdo not matter yet. Required knowledge:

Mouse moved event.

5.1.4.10 Turns

The creation of a GUI-based checkers game that allows piecesto be moved, jumped, and crowned,

and requires sides to take turns. Required knowledge: Optionally threads.

32



www.manaraa.com

5.1.4.11 Turn display

The creation of a GUI-based checkers game that allows piecesto be moved, jumped, and crowned,

requires turns, and displays current turns. Required knowledge: Layout managers, labels.

5.1.4.12 Required jumps

The creation of a GUI-based checkers game that allows piecesto be moved, jumped, and crowned,

requires turns, displays current turns, and requires jumpswhenever they are available. No new knowledge is

needed.

5.1.4.13 Game completion notification

A fully-functional, GUI-based checkers game allowing all valid plays, requiring turns, and display-

ing the winner then the game is completed. Required knowledge: Game lost algorithm.

5.1.4.14 Double buffering

A fully-functional, GUI-based checkers game with double-buffered graphics for smooth screen re-

draws. Required knowledge: Double buffering.

5.1.4.15 Seizable board

A fully-functional, double-buffered, GUI-based checkers game that allows resizing. Required knowl-

edge: Component listeners.

5.1.4.16 Networked game

A fully-functional, double-buffered, resize-able, networked, GUI-based checkers game. Required

knowledge: exceptions, sockets, Java I/O.

5.1.4.17 Multi-threading

A fully-functional, double-buffered, resize-able, networked, GUI-based checkers game that uses

threading to prevent freezing during network communication. Required knowledge: threads

33



www.manaraa.com

5.1.4.18 Basic Chess

A fully-functional, double-buffered, resize-able, networked, multi-threaded, GUI-basedchess game

with all typical moves. Detecting checkmate and stalemate are not required yet. Required knowledge: loading

images, chess moves.

5.1.4.19 Complete Chess

A fully-functional, double-buffered, resize-able, networked, multi-threaded, GUI-basedchess game

with special moves (en-passant, castling, and pawn promotion). Detecting checkmate and stalemate are not

required yet.

5.1.4.20 Game end notification

A fully-functional, double-buffered, resize-able, networked, multi-threaded, GUI-basedchess game

that notifies on checkmate and stalemate. Required knowledge: Checkmate and stalemate rules.

5.2 Supporting Features

The core of theτέχνη approach is using large-scale, graphical projects to structure the learning envi-

ronment. However, the Quest-Oriented Learning (QOL) modelis more than just large, graphical projects, and

include elements of encouraged research into outside materials for better results, opportunities for repeated

practice and feedback, and peer learning. While some of these supporting elements may not be as important

later on in the students’ academic careers when they have already learned how to seek outside information,

how to learn from and teach others, and how to practice and hone skills on their own time, it is still important

for the environments in each classroom to provide encouragement for these healthy learning behaviors. In

beginning classes, students need more direct instruction as they learn to take control of their individual quests.

5.2.1 Pair Design for Laboratory Work

This component encourages the student to take the role of teacher if his partner does not understand

the problem. Unfortunately, some students actively avoid collaboration [45], possibly in an effort to be better

in control of their results or out of fear of social environments. It is important to motivate these reluctant

collaborators to begin to build their abilities to work withother computer scientists.

34



www.manaraa.com

5.2.1.1 Background

Pairs programming is widely recognized as a successful method of improving students’ competence

in computer science. Pairs programming has been shown to improve course retention [53], improve program-

ming ability [29], improve test scores [54], accelerate theprogramming process [75], and increase student

enjoyment [53] while lowering students’ dependence on teaching staff [76].

Pair design [49] is a modification on pairs programming whichadditionally provides a place for

students to practice design skills. Teaching students design concepts in first-year courses has been a goal of

many educators, leading to classes solely in design [3], required design submissions [44], and having students

code from a design [25]. However, while all these approachesexpose students to design, they do not actively

demonstrate to students how practicing design can actuallyimprove their program accuracy and efficiency.

Consequently, by modifying pairs programming to depend on good program design, we have created

a new method of collaboration called pair design. Pair design provides similar collaboration benefits as

those afforded by pairs programming with 4 additional benefits: 1) students practice design before coding;

2) students see the benefits of doing a thorough job of design;3) students must be able to understand the

program enough to work alone; and 4) students learn to teach one another.

5.2.1.2 Support of QOL

The pairs design approach is used in the laboratory environment in order to support the Quest-

Oriented learning model by allowing students to learn from and teach others, encouraging students to develop

the social relations needed to achieve open problem discussion, and preparing students for the planning

needed in large projects. As students work through the phases of semester-long projects, they become aware

of the benefits of designing solutions in advance. Otherwise, the code becomes difficult to manage and

upgrade. Theτέχνη curriculum brings with it an emphasis on planning solutionsbefore coding. Even if

students are required to hand in designs for their solutions, it is difficult to teach them how the design process

should truly work.

To answer this need, we use pair design to train students in the lab how to design before coding.

In that the semester-long projects ofτέχνη require good designs, theτέχνη approach is driving both lab

approach and the class lecture approach. Pair Design provides the support needed for the class projects

while also emphasizing the social aspects of learning that are recognized in the problem-based learning [21],

constructivism [6], and intentional learning [47] approaches incorporated in theτέχνηmodel. The labs for the

35



www.manaraa.com

τέχνη project utilize teamwork to teach students programming design and social skills, as well as reinforce

their programming skills.

5.2.1.3 Description

The concept behind pair design is to adapt pairs programmingto small tasks in order to improve

the lab experience and reinforce other important computer science skills. There are 4 key components to the

approach: 1) students are to pair up with someone of a similarlevel; 2) students work designing a solution to

the project on paper before coding; 3) students code separately; 4) students are rewarded for the performance

of their partner and the speed of their completion.

The first component of pair design is based on previous research with pairs programming. Katire

et al. found that students perform better when paired with students they perceive to be at a similar level

[38]. Students who consider themselves more advanced than their teammates are unlikely to accept input.

Similarly, students who consider their teammates to be moreadvanced than themselves may be unwilling to

contribute. Therefore, the best team performance is from students who perceive one another as equals.

The second component is the most important part of the approach. Each pair of students is asked to

design a solution before beginning any coding. Students must work on paper to outline an approach that is best

for solving the problem. This step is key in training students to think through problems and perform design

testing before beginning code. As students work out the solution together, they learn to locate information

from their notes and textbooks themselves, rather than relying only on the lecturer. The key to this phase for

the instructor is choosing problems that can be designed in an hour, written in an hour, and yet still require

planning.

The third component gives students a chance to work by themselves. While this is a departure

from the pairs programming approach, this step provides a few benefits. One is that both students have the

opportunity to code what they designed together. Therefore, both students have the opportunity to look at the

code themselves and understand it. Moreover, if one studentis taking the lead on the project, he must confirm

that the other student understands the design well enough towork on his own. On a small scale, students are

taking on the role of a teacher and practicing use of programming terminology.

The final component is to provide motivation to students to work with their partners and to do a good

job of designing the solution. A few students may be prone to ignore their partners and work separately, and

others may do a slip-shod job of designing and testing the design. Thus, the last component is to provide posi-

tive reinforcement for working together by making part of each student’s score depend on the performance of

36



www.manaraa.com

his partner as well as emphasize the importance of coding from a correct design. With this approach, students

who refuse to work with their partners will not be able to achieve as high a score as students who do, and

students who design poorly will take much longer to completethe assignment than those who have a good

design to work from.

5.2.1.4 Implementation

We have utilized pair design in the laboratory environmentsfor all four beginning computer science

courses. The components of pair design were implemented in the following manner:

Pairing At the beginnings of the semesters, students were allowed topair with whomever they

chose. In classes in which the students did not know each other, they were assigned partners. Each week,

students were permitted to choose different partners. Once students began to differentiate themselves by

performance, students were assigned to pairs based on similar programming ability. With minor exceptions

though, students had already paired themselves with those of a similar level. In the case of CS2, most students

naturally chose the partners they had had from the previous semester.

Design The first half of the lab period (approximately 45 minutes), student pairs were asked to

write down on paper a design for the problem at hand. Studentswere allowed to use textbooks and notes,

but not the computer. This final restriction was to prevent students from coding and testing the program

early. Students were encouraged to design in pseudocode, but some tended to write out the program on paper

instead.

Coding At the half-way point of the lab, students were asked to separate from their partners and

code the solutions on their own, using the paper design they had worked out with their partners. At this point,

students could no longer consult with their partners, but instead had to rely on the accuracy of their design.

Reward for Performance At the end of the lab, the first pair to submit the program correctly was

awarded an extra 5 points. This reward was to help motivate the pairs to plan well. Programs that are planned

well do not require as much debugging. If the design is perfect, students can simply translate pseudo-code to

code and work out any syntax errors. Therefore, this award seeks to motivate students to do well designing

the solution in the first 45 minutes. By rewarding pairs, students who are simply fast at programming cannot

win if they have not designed well enough to keep their partners on track.

37



www.manaraa.com

A second incentive for designing well with partners was thatthe student’s partner must correctly

complete the assignment in order for the student to receive more than an A-. This point system instills in

students the necessity of ensuring their partners’ understanding.

5.2.1.5 Results

The second-year programming class was split into two labs: one with the previous approach of

working individually with no required design and one with pair design. Both sections were given surveys

about teamwork, design, and other programming behaviors. Statistically, the results showed no difference

between the two sections. While it is disappointing that thestudents involved in pair design did not outper-

form the students in the original approach, they did not under-perform the students in the original approach

either. We can conclude that without any detriment to performance, students were able to use half of the

lab time to work through solutions with a teammate and half the time to code, while the other lab used the

entire time to code the same lab. We conjecture that more difficult problems may be necessary to differentiate

performance.

Benefits The intangible benefits of using pair design in CS1 and CS2 seem to be that the new

computer science students quickly made friends and learnedfrom each other at a point in which many first-

year students feel isolated and lost. The environment of theCS2 class seemed more open and relaxed than

usual, since the students were more accustomed to their peers in the class. Students were ready to discuss

solutions without fear of being wrong. Gradually, studentswere learned what design processes work best for

them and led them to complete the assignments more quickly and correctly. Pair design are provided them

the opportunity to engage in trial-and-error learning of the design process.

Needed Improvements A couple of problems surfaced with using pair design with thefirst-year

classes. While designing the solution was not too difficult for the second-year students, first-year students

struggled to work through logic without simply coding the entire assignment on paper, thus eating into their

design time. Similarly, first-year students were more likely to design a flawed solution and not identify the

problems until coding time. Since the goal of pairs design isto provide practice and motivation for designing,

this is not necessarily a flaw in the approach. However, in light of these difficulties, future first-year classes

will include more training focused on how to design and test asolution separate from compiling and running

the program. This will better equip the students to apply these skills in the pair design environment.

38



www.manaraa.com

Conclusions Pairs design provides students with the opportunity to learn the benefits of design,

design testing, and teamwork. The current implementation of the approach seems to indicate that the students

learn equally well in second-year courses while first-year students learn the value of discussing and designing

a solution before coding. While beginners struggle with design, they are learning the benefits of thinking

problems through completely before typing code. Since manybeginning programmers are accustomed to a

technique of “changing things until it works,” pair design alternatively exposes students to a more efficient

and reliable programming method.

5.2.2 Additional Components

Semester-long graphics projects provide the core structure in theτέχνη curriculum. Additional

components in line with the goals and foundation are also employed, especially for students in lower-level

courses. Five additional reinforcing components used are ice breakers, online coding practice, encouragement

of extra credit, reports, and open problem discussion.

Ice breakers are a method of introducing students to one another and establishing a comfortable

learning environment. Examples include creative self introductions or group games. These activities encour-

age socialization, decreasing isolation. Also, students who do not make friends with others in the class may

be too shy to ask questions in class. While ice breakers may not be as necessary for upper-level courses, they

are strongly encouraged for any group of students in which the majority of students do not know one another,

such as the first course in a sequence.

Online coding practice is provided to first-semesterτέχνη students through the automatically-

graded, online coding practice suite called CodeLab (http://www.turingscraft.com/ ). While repetitive coding

practice may be achieved other ways, CodeLab has proven effective in many settings. The National Science

Foundation funded the development of CodeLab out of the successful WebToTeach program [1]. CodeLab

gives beginning students the repetitive practice drills needed at an early stage to learn language constructs at

their own pace without any burden on the instructor to createor individually grade these drills. CodeLab has

over 200 questions for students to answer, beginning with the declaration of variable types to the creation of

recursive functions. Students must pay to subscribe to CodeLab, but CodeLab is free to the instructor.

39



www.manaraa.com

Extra credit encouragement may be provided by capping maximum grades for perfect assign-

ments below 100%, requiring some added feature for additional points. The benefit of encouraging extra

credit is the opportunities for students to express their creativity by devising useful additions to the program

not covered in class. Also, students must take the initiative to discover how to add these features. To en-

courage the creation of attractive images, a teacher may offer extra credit for artistic results. Anecdotally, the

most creative work done by students inτέχνη has been from open-ended extra credit.

Class reports let the student presenters discover where to find needed information and practice

explaining these concepts to the rest of the class. Each students gets experience in minor research and

teaching, while the class learns about new tools. For example, in the first-year courses using the unix OS,

every student may give a 5-minute presentation on a different unix command. Students learn how to use

man(or the internet) to find information on the command and writea presentation about it. In later courses,

students may give short presentations on programming techniques, library functions, and related work at the

instructor’s choosing.

Open problem discussion means that students are encouraged to discuss the problems with each

other as long as they never talk about code. Additionally, students who have completed their assignments

are encouraged to help each other with minor syntactical compiler errors, in which a “minor” error is defined

as an error caused by mistyping, such as misspelled functionor variable names, missing or extra symbols,

or unclosed comments. Errors that are caused by a misunderstanding of the solution, such as adding instead

of multiplying, are not considered minor. Concerns about cheating have led to restrictive interaction rules,

inhibiting healthy academic growth through contact with others. Restrictive rules have not prevented cheat-

ing; instead, first-year students in highly restrictive environments tend to feel isolated and frustrated, leading

some to panic and flagrantly copy another student’s file. Since some students will cheat regardless of the

rules, it is not useful to penalize honest students. Instead, it is recommended that a clear policy of appropriate

interaction be established and agreed upon. For example, inone first-semester course, students were required

to have anyone who helped them debug minor syntactical errors sign a paper stating what help was given and

when. At the bottom of this so-called “honesty sheet,” the student signed that no help occurred outside the

help listed and that he did not participate in discussions involving code or pseudocode, outside of help with

solving minor compilation problems. The benefit of such sheets is that students are clear on what signifies

cheating and must clearly indicate whether they were a part of it. Honor codes have been shown to reduce

40



www.manaraa.com

cheating, allowing students the freedom of open discussion. Psychologist Lev Vygotsky asserts that learning

happens not by itself but through social interaction [71]. Although interaction with the professor is definitely

social, more interaction prolongs the learning process.

All of these reinforcements are in line with the goals of Quest-Oriented Learning and bolster the

foundation of the curriculum. Ice breakers, open problem discussion, and pair design encourage socializa-

tion. Reports, open problem discussion, encouraged extra credit, and pair design put students in the roles of

researchers and teachers, in line with intentional learning. Online coding practice gives students repetitive

practice without burdening the instructor, and open problem discussion also lessens the load on the teacher

to help with minor debugging problems.

5.3 Introductory Language Selection

It is increasingly common for Computer Science educators tointroduce students to programming

using object-oriented languages, especially the popular Java programming language. Because of this current

trend, the technique of beginning students with an imperative language (C) is not typical and should be

explained.

First, the author is certainly not unfavorably biased against Java or object-oriented programming per

se. Not only was Java her first programming language with object concepts postponed (“Objects Late”), but

the author’s Master’s thesis was a method of extracting UML class diagrams from C++ source code [48]. The

decision to begin with an imperative language was instead based upon which approach was more appropriate

for the education of good computer scientists. Under this curriculum, objects are introduced to students in

the second semester, and Java is currently the language of choice for the design class in the fourth semester.

5.3.1 Java Versus C

The debate over the introductory programming language may be broken down into two categories:

debate over specific language choice and debate over language type (imperative versus object-orientation).

The specific language choice that has been debated since the inception of this curriculum is C versus Java.

Some criticism is aimed almost exclusively at perceived problems with starting with C, while other criticism

emphasizes a perceived superiority of Java over C.

41



www.manaraa.com

5.3.1.1 Addressing C “Traps”

At the first suggestion of beginning with C instead of Java, one colleague recommended Andrew

Koenig’s technical report on C pitfalls [40]. His report andfollowing book by the same name bring to

light a great number of tricky points with the C programming language, and it is a great resource for C

users. The paper does not however make the case for Java over C, as sixteen of the addressed pitfalls also

occur in Java (due to its similarities to C), including confusion about bitwise and logic operators, string and

character notation, operator precedence, incorrect semicolon placement, switch statement structure, dangling

else clauses, expression evaluation order, zero-based arrays, shallow vs. deep copies, integer overflow, shift

operator issues, division truncation, function invocation parenthesis requirements, and naming restrictions.

An additional shared issue, confusion about “=” and “==”, is addressed in Java by the existence of a boolean

type, but can be addressed in C by requiring students to put the constants first in conditional comparison

statements. e.g.if(5 == x) {}. Two pitfalls relate to macro use (which should be avoided, especially in the

first semester), three relate to misconceptions about library functions that can be cleared up by reading library

documentation, three have been addressed in newer compilerversions, two would be caught by the compiler,

and three are tremendously rare and would be issues only for experts in the C language who exploit advanced

features and notations in C. Three traps relate to portability, which is a problem in any language except Java,

and Java of course possesses sixteen other pitfalls.

The three remaining pitfalls are the existence of both signed and unsigned character types, the dif-

ferences between pointers and arrays, and assumptions byscanf about its parameters’ types. Java’s lack of

an unsigned character type complicates image processing, so the availability of a choice in C is beneficial.

Pointers and arrays are definitely tricky aspects of the C language, and while they can be postponed to later in

the first semester, students will eventually need to learn C,and placing its introduction into one second-year

course does not afford students enough time to become comfortable with the language [63]. Similarly, use

of scanf can be postponed through use of other I/O functions until students are ready to learn howscanf

truly handles parameters. An old proverb says, “knowledge is easy to him who understands”(Prov. 14:6b),

and once students understand howscanf works, they can easily avoid mistakes.

5.3.1.2 Comparing Java to C

After addressing general concerns about C, the question remains whether Java or C is better suited

to introductory courses. Java is described inThe Java Language Environmentby James Gosling and Henry

42



www.manaraa.com

McGilton (May 1996) as a simple, interpreted, portable, robust, high-performance, multithreading, adaptable,

secure programming language platform. On the other hand, C is described inThe C Programming Language

[39] as a “general-purpose programming language which features economy of expression, modern control

flow and data structures, and a rich set of operators.” As might be guessed by their descriptions, the C

programming language is much smaller than the Java programming language, and the provided C library is

much smaller than the Java API. Thus, the first argument for C over Java is that C is a smaller language, and

it is actually simpler to fully understand. Students beginning in Java may be overwhelmed by the extensive

(and still evolving) Java API, whereas the C programming language’s API is much more limited and more

stationary. Java, with its many advanced features, is overkill for beginning students who will not benefit from

a large portion of them. Once students are comfortable with programming and using provided libraries, the

Java API becomes a wonderful, extensive resource.

Additionally, since Java draws from C++ in its design (which in turn draws from C), program

control (counted loops, conditional loops, and branches) in C and Java are virtually identical. Most concepts

needed in C are also needed in Java, and therefore C can be usedas a stepping stone to Java once the shared

concepts are mastered. One cannot learn to program in an object-oriented manner without also learning

logical program control, and therefore C provides the foundations needed for later OO development.

Extra functionality provided in C that is not in Java includes memory allocation control (i.e. choice

of dynamic or non-dynamic memory), pointers, and more primitive data types (with the exception of a sepa-

rate boolean type). All three features lead to discussions of the computer memory model and promote student

understanding of what occurs inside the machine when they write code. With its strong ties to assembly

language, “C’s design follows an underlying logic” [63], providing a clearer view of the machine than higher

languages do. The direct correlation of C structure to the computer memory model allows students to observe

any flaws in their naive mental models of computing systems, accommodate the observed behaviors, and

construct more accurate models.

For the purposes of this curriculum, Java’s lack of an unsigned character data type makes it less

suitable than C for modifying binary image data. This problem is exacerbated by the lack of flexibility in

the provided Java I/O libraries. The simple portable pixmap (PPM) format image files used in the first year

of classes have ASCII headers followed by binary image data.Java’s I/O library makes reading a file with

two different parts difficult. (Note that no image reading libraries are used in C or Java in the introductory

courses.) Java provides a binary data reader, a highly versatile ASCII scanner, and a reader that allows data to

be “pushed back” into the stream, but each is a separate reader that cannot be used in tandem with any other.

43



www.manaraa.com

PPM image files can be read with some difficulty using Java’s data reader, but the resulting data are signed

bytes. Any modifications made to the data must be done after converting each byte into an unsigned format

(using addition and modular arithmetic) to place it to the range [0, 255].

While C has some useful features Java does not have, Java has many useful features C does not have,

such as garbage collection, built-in string handling, and simpler compilation/interpretation. These features are

very helpful for experienced programmers, but obscure the mechanisms from beginners. Just as mathematics

students learn to do arithmetic before using calculators, CS students should learn about memory handling,

string representation, and the compiling process before using tools that perform the work for them. Similar

to the benefits of C’s extra features (pointers, memory allocation control, etc.), C’slackof garbage collection,

built-in string handling, and one-step compilation lead tobetter understanding of underlying mechanisms. By

needing to free allocated memory and being forced to understand the structure of a string, students observe

the impact of their programs on the machines. Similarly, seeing the phases of compilation through use of

preprocessor directives and header files, and the separation of compiling and linking, students understand

what a compiler is doing, preparing them for later classes incompilers and optimization.

The understand-before-tools approach that drives teaching mental arithmetic before calculator use

applies directly to debugging skills. While Java’s clear compiler and runtime error messages aid rapid error

location and correction for skilled programmers, these supporting features can be detrimental to beginners.

Students often become dependent on an environment’s ability to almost always pinpoint the offending line

and fall into a “change something in that line” routine, inhibiting the development of debugging skills, and

frustrating students when the line indicated is not actually the problem. Students need to learn from the

beginning when the programs are small how to find errors through code reading and analysis so that they

have the debugging skills necessary when program sizes increase. Since computers are not yet better able

than a good programmer, students need to develop the skills to find errors themselves in order to benefit later

from the hints provided by error messages.

One final argument draws from the belief that study of older and simpler tools naturally segues into

study of newer and more complex tools. The progression from Cto Java is better explained in historical

sequence, revealing the logical steps leading from one to the other. For example, by starting without garbage

collection, phasing into garbage collection is straightforward. Also, since classes and objects were created

to improve design in imperative programming, starting without them and building the need for them more

naturally follows the historical evolution. Starting a path with C and leading to Java reveals to beginning

students the legacy and profound impact of the C programminglanguage on Computer Science.

44



www.manaraa.com

5.3.2 Imperative versus Object-Oriented

Stepping away from the C and Java discussion, imperative languages are more appropriate intro-

ductory languages than object-oriented languages for a number of reasons. First, imperative languages begin

students with a concrete, logical foundation before exploring abstract ideas. As pointed out in previous work

[51], first-year college students are better suited for concrete knowledge [59], than for the abstract principles

involved in object-oriented programming. Abstraction is “forgetting” details of implementation and is a won-

derful tool for students, once they understand the underlying details, but “. . . how is it possible to forget

detail that you never knew or even imagined?” [6] Instead, students learn (constructively) what is shared by

both language types: a “. . . programming foundation (loops,selections, algorithms, and procedures) which

is best learned in a structured programming environment, where good algorithms can be addressed through

concrete, yet complex in nature, actions or processes” [32].

Second, depending on the educational environment, some students taking introductory programming

are there merely to learn the basics of programming to allow them to write single-use, utility programs, such

as scientific data manipulation and analysis. Object-oriented programming adds a great deal of overhead to

the first course, resulting in a “. . . change in the content andstructure of first-year programming courses.

The requirement to teach object-oriented design principles tends to relegate the essential concepts such as se-

lection and iteration into a secondary position in the initial teaching framework” [64]. This added complexity

has sometimes led to a three-course introductory sequence [67] [57], instead of the traditional, two-course se-

quence. Of course, a larger number of introductory courses is not a concern, but the courses are then called by

faculty and publishers as CS1, CS1.5, and CS2 [57], implyingthat students are not gaining more knowledge

but instead taking two semesters of content in three. Objects-early slows learning of fundamentals and opens

students to a variety of misconceptions, including confusing objects with single variable wrappers, confusing

objects with aggregate types, assuming limited method abilities, believing an object is the same as a class,

and confusing references with the objects [30].

The argument that one must start with objects to understand objects does not stand to reason, in that

object orientation did not always exist, and the first group of people to understand objects and explain them

to future generations obviously did not learn programming in an objects-early approach. OO is a wonderful

paradigm for code organization and functionality that doesnot stand separate from imperative programming,

but instead is dependent upon it, and actually grew out of it.Furthermore, objective searches “. . . for

empirical work relating to the difficulty of making the shift from imperative to object-oriented programming”

45



www.manaraa.com

reveal only anecdotal evidence from two papers [41] [19], “.. . but neither paper reported the results of a

systematic study” [46].

Despite the claimed benefits of teaching objects early, debates about using the methodology have

continued to rage. Debates on a SIGSCE mailing list were published in 2004 to shed light on some of the

arguments [8]. Contributer Stuart Reges complained

I think that the reason we’re having this heated debate is that it hasn’t turned out that a broad

range of teachers have been able to easily teach [objects early] effectively. We hear things like:

Professor A has succeeded because he uses a custom IDE designed specifically for teaching

objects; Professor B has succeeded by developing a framework of graphics classes; Professor

C has succeeded by developing tons of supporting code for each assignment. These are bad

signs, not good signs. Where is the list of professors who have succeeded because the material

is straightforward to teach? And if the material isn’t straightforward for a lifelong computer

scientist to teach, then can it really be all that fundamental? [8]

Bruce summarizes the debate with the following observation: “The one thing that there was near universal

agreement on during the discussion is that it is a challenge to teach objects early.” She continues by saying

that those who have been successful use “pedagogical IDEs, special libraries providing useful classes, or

microworlds” [8]. In contrast, imperative programming canbe taught with no special libraries or interfaces,

equipping students in one semester to write programs without props.

As a final point, students should be introduced to programming in a non-OO manner because stu-

dents never genuinely begin programming in an OO fashion, asevidenced by the community’s shift to the

term “objects early” over “objects first.” The instructor may describe OO and perhaps even design classes

and objects on paper, but the first programs in objects-earlytextbooks are never truly OO. Either the coding

is done in static methods or the classes demonstrate none of the attributes associated with objects, such as

maintained state (instance variables), encapsulation, reusability, etc. The only true difference between begin-

ning programming with objects or without objects is how soonthe imperative starter code is replaced with

OO code. If it is impossible (or tremendously difficult) to introduce programming in an OO fashion, then

objects are clearly a complex topic best left for later classes after students have learned programming basics.

46



www.manaraa.com

Chapter 6

Adaptations to Other Environments

6.1 Adaptation to Small Colleges

During the 2006-2007 year, Professor John Hunt adaptedτέχνη to fit the needs of Covenant College,

a small, faith-based, liberal arts school where he is employed. His experiences [33] demonstrate that existing

τέχνη courses need to be and can be re-tooled to meet the needs of different environments. As large insti-

tutions discover ways to improve curricula, small collegeswith fewer resources can benefit from adapting

proven approaches to fit their own needs.

Large universities with strong science and engineering programs, such as the type at whichτέχνη

was created, structure their computer science courses withthe natural assumption that most students will

be taking multiple courses in computer science and likely will be entering a field requiring a great deal of

programming knowledge. In contrast, at Covenant College the vast majority of first semester students intend

to take only one computer science course to fulfill other fieldrequirements. In fact, the 2006-2007 year saw

only one computer science major in a class of the thirty two students. The goals of the other students, outside

of fulfilling major requirements, include the abilities to create small, single-use programs that solve specific

problems, such as data from a physics experiment. While these students may not be looking for careers in

computer science, they still benefit from the challenge and motivation provided by Quest-Oriented Learning.

Certain aspects of theτέχνη implementation at Clemson may be overkill for students intending to

enroll in only one semester of programming. For example, useof the Unix environment from the beginning

for computer science students equips them for many career opportunities as well as providing them with

utilities not afforded by other commercial operating systems.

47



www.manaraa.com

Although controversial, Professor Hunt suggests that while the C language is a great way to start

for computer science students, it affords more deep understanding than needed by non-majors seeking only

basic programming understanding. While we can all agree that everyone benefits from a deeper knowledge

of any field, Hunt’s concern is that the overhead of the deeperknowledge to students who have no future in

computer science may be unnecessary.

In the case of Covenant College, while Professor Hunt had at his disposal the Unix environment

with its C compiler, the decision was made to select a language more suited to the students’ expectations that

could be written and compiled on an operating system alreadyfamiliar to them. (Although Windows and Mac

OS/X compilers are available, C is not standardized across these compilers.) Outside of requiring a language

with the ability to read and write binary files, support for arrays, and some ability to manipulate bytes, the

first-yearτέχνη courses do not mandate any particular programming language.

The programming language chosen for environments such as Covenant College needs to be one

that is useful and freely available outside of the educational environment, allowing students to apply their

newly-acquired skills outside of the classroom. Thus, teaching languages (Karel the Robot, Alice, etc.) are

not appropriate, and neither are languages that require licenses (e.g. C# and Visual Basic). Finally, if faculty

members of other departments assume students have knowledge of languages with conventional algorithmic

outlook [20] (as is the case at Covenant College), languageslike Scheme and Haskell are not appropriate.

The desire to use a freely-available, well-known, and highly standardized language at Covenant College led

to the Java programming language. Java is well known for its clear error messages both at compile time and

particularly at runtime. It is also suitable for additionalcomputer science courses for students who do enroll

in other CS courses.

The choice to teach the course in Java brings its own problems, not the least of which is Java’s object

orientation. Non-majors learning programming certainly do not need the added complexity of the object-

oriented Paradigm. Additionally, while Java meets all the requirements for theτέχνη courses, including the

ability to read and write binary files, Java’s I/O is complicated and requires exception handling.

To address these complexity issues, one may use the objects-late approach as Hunt did, requiring

all methods to be static. In the second course (the raytracer), students may learn OO, as is appropriate for

the raytracer. Discussion of exception handling may be postponed by use of the “throws” clause any time a

method that throws a checked exception is invoked.

Choosing the programming environment to use for Java requires some deliberation. Using learning

environments, such as BlueJ and DrJava, for a single semester tends to lead students to think the interface

48



www.manaraa.com

and the language are one and the same, and students may not always have access to these environments. At

Covenant College, Hunt instead instructed students to use basic text-editing programs, such as Notepad and

Wordpad. Compilation may be done with the Sun™Java compiler from the command prompt. With such a

minimal tool set, students may use any operating system withwhich they are comfortable.

Thus, theτέχνη approach may be applied to other operating systems and otherprogramming lan-

guages that allow generation of PPM format image files. Of course, the PPM image format is not as common

as some other more complicated image formats, and while Unixhas built-in image viewing applications that

support PPM format, other operating systems do not. Fortunately, the internet affords many free, GUI image

viewing tools that do support the PPM format. Hunt’s class settled on XnView, an image viewer available

for Windows, MacOS X, Linux x86, Linux ppc, FreeBSD x86, OpenBSD x86, NetBSD x86, Solaris sparc,

Solaris x86, Irix mips, HP-UX, and AIX. Other viewers are freely available, and there will likely continue to

be freeware programs supporting this format and conversionbetween it and more commonly-used formats.

Computer science students, both majors and non-majors, maybenefit from theτέχνη curriculum.

The curriculum affords a motivating and challenging learning experience thatdraws away from the typical

basic programs that tend to bore this generation of studentswho, regardless of institution, are more visual

and desire creative expression. With their lifetimes of exposure to computers, basic computer functioning (or

even typical GUI’s) cease to impress students. Whether theyseek a lifetime of computing or a passing grade

in a single course, students need a curriculum that sparks their interests.

6.2 Adaptation to an Upper-Level Course

Computer graphics provides a natural platform for teachinga variety of general computer science

courses due to the rich variety and complexity of the problems encountered in computer graphics and the

educational advantages of visual learning through the generation and evaluation of graphical images. Addi-

tionally, the real-world problems in the computer graphicsfield tend to capture the attention of students living

in an ever increasingly visual culture.

In a standard course on programming, assigning large, graphics-based projects, as opposed to tradi-

tional “toy” projects, can be accomplished in a fairly straightforward manner, while simultaneously engaging

the students at a much higher level. For a network programming course as discussed here, we propose that stu-

dents will find projects such as distributed rendering (as used in computer-animated feature film production)

and interactive networked-based graphical games more engaging than traditional projects, such as network

49



www.manaraa.com

monitoring for performance evaluation [14].

6.2.1 The Course: CPSC 360

Students enrolled in CPSC 360–Networked and Distributed Computing, a third-year networking

course at Clemson University–are required to know C, but maynot have any background in networking;

therefore, the class combines material on networking concepts with experience in network programming.

Topics covered in the course include network types and characteristics, service paradigms, the OSI network

model, DNS, sockets, network formats, and various protocols (IP, UDP, and TCP). Programming topics

include sockets, Unix processes, and object-oriented network programming with Java and C++.

Programming assignments in the course traditionally buildtoward the final project, a performance

management client-server application. Students use this application to assess network performance with two

types of tests: an echo test and a sustained throughput test.For the echo test, the client computes the round

trip time (RTT) of a message traveling between client and server to measure network performance. The

sustained throughput test between client and server tracksthe speed of data arrival and computes overall

average throughput. Both tests are performed for UDP and TCP.

6.2.2 Supporting Resources

Many graphics applications, such as raytracing, are ideally suited for parallelization. One way to

perform parallel rendering is to employ a network of workstations acting as a single machine. This ap-

proach, termed “distributed” or “cluster” computing, is conceptually similar to multiprocessing, but here

each processing element consists of an independent machineconnected to a LAN, usually much slower than

a multiprocessor interconnect (backplane) network. Whilethis network can be of any type (e.g., Ethernet,

ATM) or any topology, the computers connected to it must support some type of distributed programming

environment to help the machines work together.

With such a system, we can introduce graphics projects, suchas distributed raytracing or real-time

rendering of complicated surfaces, as a means of learning network programming. The next section outlines a

proposal for the using these resources in the course.

50



www.manaraa.com

6.2.3 New Approach

The re-designed course underτέχνη will cover the same content and require the same type of pro-

gramming, but with a Quest-Oriented approach. In this way, we provide students the opportunity to learn

about networking through problems relevant to professional practice and provide the motivation to excel in

the educational environment.

The project used to structure the learning for this networking course could involve animation or

manipulation of a large-scale, complicated surfaces (suchas the rendered image of the Hunley submarine in

Figure 6.1), implementation of an interactive game played across a network, or the development of a new

method of subdividing production rendering across a large cluster. The instructor could vary the approach in

different semesters. Depending on the amount of work required, students could work in pairs to implement

the assignment. Once a project has been chosen for the course, the instructor must break it down into phases.

Figure 6.1: Fully rendered image of the Civil War-era Hunley Submarine

Choosing the development of a new method of subdividing production raytracing across a large cluster as the

example, we could identify the first phase of the project as rendering a single image on multiple, networked

machines, given the code to render on a single machine. This network adaptation would expose students to

the advantages of parallelization, as well as the overhead incurred in using the network. Classroom instruction

at this stage should cover networking basics, sockets, programming models, and sample code for distributing

rendering tasks and compositing the results into a final image.

Building upon the first phase, the second phase could test differing network configurations, proto-

cols, and service paradigms to determine what combinationswork best for various problems. As students

51



www.manaraa.com

work to write and debug these programs, they will rely on visual feedback provided by the resulting compos-

ited image to determine where problems lie. Methods for loadbalancing the rendering tasks across multiple

machines can also be addressed at this stage. A rich set of load-balancing possibilities exist, including non-

uniform tiling in image space, decomposition in object space, as well as variable task assignment between

CPUs and GPUs. If students have previously taken a raytracing course, they can research and apply a wide

variety of distributed computing techniques to their previous projects. Additional information on network

protocols and programming techniques could be explored at this point.

Finally, after having experimented with different protocols and configurations to improve run-time,

students would be ready to develop their own models of subdivision and configuration. This phase does

not need to be completely open, but instead the instructor could recommend papers on new approaches or

recommend ones not yet explored. Having some amount of freedom in the implementation may lead to a bit

of competition between teams to have their images render faster, pushing students to seek solutions outside

of classroom material.

The experiences at Covenant College and the example networking course demonstrate thatτέχνη

is not restricted to introductory courses at large universities, but instead can motivate, support, and broaden

students in many, if not all, computer science courses, regardless of level or learning environment.

52



www.manaraa.com

Chapter 7

Results and Evaluation

7.1 The Original, Second-Year Raytracing Course (215)

This second-year course, which explored programming methodology through the introduction of

the C language via the raytracing project, generated encouraging results [15]. Based on the work performed

and student evaluations, we concluded that the projects were more engaging to the students than previous

approaches.

7.1.1 Student Images

Throughout all phases of the raytracing project, students were encouraged to be creative in scene

design. In spite of the limited tools available to them, the students showed an impressive creativity. The

images in 7.1 (a) and (b) represent work from the first phase ofthe ray tracer. Considering that the only

geometries known to the students at this stage were the sphere and the infinite plane, we find these images

show an impressive capability, which can probably be attributed to the students’ heightened level of interest.

The remaining images show mastery of additional features, such as reflection and anti-aliasing, as well as

optional features, such as quadrics and textures. Figure 7.2 represents work from the same course taught

two years later by a different instructor. The image 7.2 (a) is an Anaglyph, an image that appears 3D with

two-color (red-blue) glasses. The sky in image 7.2 (f) was generated using a noise algorithm the students

downloaded. The creativity and artistic components present in both sets of images, which come from classes

with different instructors, demonstrate that the creativity expressed by the students was not restricted to one

53



www.manaraa.com

(a) By student S. Duckworth (b) By student T. Nguyen

(c) By student S. Duckworth (d) By student T. Nguyen

(e) By student J. Holcombe (f) By student S. Haroz

Figure 7.1: 2002 CPSC 215 Example Student Renderings.

54



www.manaraa.com

particular instructor or particular group of students.

7.1.2 Student Evaluations

As evidenced by anonymous semester-end evaluations, students responded positively to learning

C/C++ through graphics. Many students felt that the semester-long project was educational and interesting to

implement. They especially seemed to appreciate the visualfeedback from their projects, both for aesthetic

and problem determination purposes. Corroborating evidence is supplied by the near absence of student

decisions to drop the course, which was unusual for these classes. Many students brought their laptops

(Clemson requirement) to class to discuss (or show off) the previous night’s rendering successes and failures.

The following are sample excerpts from anonymous student evaluations of the course [15]:

• The raytracer project was good because it gave visual feedback of your accomplishments and impres-

sive results. I liked that we continued with several versions of the project leading to a large and useful

program in the end.

• The raytracing project was great. It provided practical usage to learning C rather than just making a

useless program that ‘implements a linked list or binary tree.’

• The raytracer also gave me a much stronger knowledge of C than[other courses] did with Java.

• It is the first class where I wrote a program that I will not throw away at the end of the semester.

• The class wasn’t just like some ordinary class. We got to do something fun and different.

• Making a raytracer is so much cooler than making a card game.

Other areas of comment, but on the negative side, involved the amount of work required toward the end of

the semester, which was addressed by moving the project froma three-hour course to a four-hour course

and by structuring the previous class to cover C and image processing in order to better prepare students for

raytracing.

7.1.3 Survey Results

During the 2003-2004 academic year, 73 students from three different sections (taught by three

different instructors) of the second-year raytracing course were surveyed to collect their impressions of the

course. One section of the course had beginning Digital Production Arts (graduate, MFA program) students,

55



www.manaraa.com

(a) 3D image by C. Guirl (b) By student D. Duvall

(c) By student J. Donboch (d) By student J. Fisher

(e) By student K. Johnson (f) By student R. Coleman

Figure 7.2: 2004 CPSC 215 Example Student Renderings.

56



www.manaraa.com

and 8 of those students took the surveys as well. The survey questioned students on the relevance of the

course, its impact on their interest in graphics, and the improvement of their C and Unix skills.

7.1.3.1 Course Relevance

(a) Appropriateness (b) Success of Big Project

Figure 7.3: 2003-2004 Pilot 215 Course Relevance

The charts (7.3) indicate that while not all students loved the approach, the majority of students

believed the course appropriate and relevant. On a scale of 0-9, the students gave the appropriateness of the

course a 6.73, with a median of 7, and a standard deviation of 2.23. On a scale of 0-9, the student enjoyment

of doing a big project was 6.20, with a median of 7, and a standard deviation of 2.73.

7.1.3.2 Graphics Interest

(a) Prior Interest (b) Resulting Interest (c) Interest Improvement

Figure 7.4: 2003-2004 Pilot 215 Graphics Interest

A concern that non-DPA students might dislike the classes ifthey are not interested in graphics was

57



www.manaraa.com

addressed by a question about prior and post graphics interest. The graphics interest beforehand was widely

spread (Figure 7.4(a)) with an average value of 4.82 on scaleof 0-9, with a median of 5 and a standard

deviation of 2.56. Afterward, students placed interest in graphics at 6.05 with a median of 7 and standard

deviation of 2.47 (Figure 7.4(b)). The graphics interest improvement in students averaged a statistically

significant 1.16 points (P < .0025) with a median of 1 and a standard deviation of 2.66 (Figure 7.4(c)). In

conclusion, students were not turned off by a class heavy in graphical content but developed new interest in

the field.

7.1.3.3 C and Unix Skills

(a) Prior C Knowledge (b) Resulting C Knowledge (c) Perceived C Improvement

(d) Abilities in Unix (e) Ability to Search Unix (f) Knowledge of Unix Text Editors

Figure 7.5: 2003-2004 Pilot 215 Perceived Skill Development

Since the course targeted C and Unix, students were surveyedabout their perceived skill develop-

ments therein. On the scale of 0-9, students placed their prior knowledge of the C language on average at

2.62 with a median of 2 and a standard deviation of 2.26 (Figure 7.5 (a)). After the course, students placed

their C knowledge at a mean of 5.79 with a median of 6 and a standard deviation of 1.79 (Figure 7.5 (b)). The

average perceived gain in C knowledge was a statistically significant 2.7 points (P < .0005) with a median of

3 and a standard deviation of 1.55 (Figure 7.5 (c)).

58



www.manaraa.com

On average, students placed their overall Unix abilities at5.26 points with a median of 5 and a

standard deviation of 1.55 (Figure 7.5 (d)). Students considered their abilities to search for files in Unix to

be on average 4.53 points (median 4, standard deviation 2.04, Figure 7.5 (a)), and their average abilities with

Unix text editors at 5.57 (median 5, standard deviation 1.88, Figure 7.5 (f)). Students felt that they knew C

better than Unix by an average of 61.4% C knowledge to 48.6% Unix knowledge (median of 60%, standard

deviation of 1.66).

Overall, the surveys indicate that the class was successfulin improving students’ knowledge of C

and Unix, as well as their interest in graphics, and the majority of students enjoyed the big, semester-long

project. Having thus maintained the educational level of the course while adding the benefits of student

and instructor enthusiasm, the pilot course was considereda success, leading to the installation of theτέχνη

approach in the first four courses of the Computer Science major.

7.2 Computer Science I

In Computer Science I, the students incrementally work to create a color transfer program [50].

Using an algorithm due to Reinhard, Ashikhmin, Gooch, and Shirley [60], students read in two images, apply

the color scheme from one image to the other, and output the resulting image. No libraries other than the

built-in C library were used. The project requires knowledge of array indexing, pointers, dynamic memory

allocation, and structures, making it well suited to first-semester students [51].

7.2.1 Phase 1 at Clemson University

In the fall of 2005, less than three weeks into the introductory computer science course, students

were asked to turn in a C program that generated a PPM image. Although the images could be solid-color

images (7.6 (c)), students were encouraged to create an interesting pattern for extra credit. From a class of

36 students, 50% turned in extra credit images with patternsor shapes for the first assignment. Surprisingly,

none of the students asked for help with the extra credit versions. See Figures 7.6 and 7.7. Some images have

intricate patterns that have been enlarged in a box in the upper left-hand corner of the images.

7.2.2 Phase 1 at Covenant College

In the Fall of 2006, Covenant College used theτέχνη approach and saw similar results. (More

information about Covenant College’s experiences may be found in Chapter 6). Students came up similar but

59



www.manaraa.com

(a) By student J. Leyh (b) By student M. King (c) By student B. Holder

(d) By student M. Rardon (e) By student V. Tan (f) By student C. Daugherty

(g) By student B. White (h) By student B. Schneider (i) By student J. Canter

(j) By student J. Griswold (k) By student K. Abbot (l) By student T. Williams

Figure 7.6: 2005 CPSC 101 Phase 1

60



www.manaraa.com

(a) By student L. Seagers (b) By student C. Prosser (c) By student J. Smith

(d) By student K. Musselman (e) By student R. Squires (f) By student W. Pheiffer

Figure 7.7: 2005 CPSC 101 Phase 1: Images with Enlarged Detail

different creative patterns, as shown in Figure 7.8. Again, images with intricate detail have enlarged views in

the boxes in the upper left-hand corners.

7.2.3 Phase 2

Phase 2 was the conversion of an image to grayscale (or another image alteration). At Clemson

University, 50% turned in a correct solution for the second phase, with a few doing creative alterations. See

Figure 7.9.

7.2.4 Phase 3 at Clemson University

Phase 3 was a more complicated modification that required buffering the entire image. At Clemson

University, of the remaining 27 students (fewer students due to standard attrition), nearly 50% completed

a working image effect (Figure 7.10), with five students programming the more complex convolution filter

(blurring, sharpening, or edge detection). See Figure 7.11.

61



www.manaraa.com

(a) By student A. McKerihan (b) By student H. Scott (c) By student J. Fleming

(d) By student J. Lewis (e) By student J. Swanson (f) By student T. Wigboldy

(g) By student A. Alms (h) By student J. Menard (i) By student J. Lawing

(j) By student J. Davis (k) By student N. Jenkins (l) By student C. Stow

Figure 7.8: 2006 Covenant CPSC 101 Phase 1

62



www.manaraa.com

(a) By student Y. Feaster (b) By student M. Rardon

(c) By student C. Daugherty (d) By student V. Tan

Figure 7.9: 2005 CPSC 101 Phase 2

63



www.manaraa.com

(a) Rotate 90 by C. Gulotta (b) Vertical Flip by J. Leyh

(c) Rotate 180 (d) Horizontal Flip by T. Steel

Figure 7.10: 2005 CPSC 101 Phase 3

64



www.manaraa.com

(a) Blur by M. Rardon (b) Sharpen by Y. Feaster

Figure 7.11: 2005 CPSC 101 Phase 3: Convolution Filters

7.2.5 Phase 3 at Covenant College

Covenant College students demonstrated a great deal of creativity in exploring image manipulations.

Given a source image of Carter Hall on the college campus, students applied color modifications (Figure

7.12), filters (Figure 7.13 (a-c)), image rotation, and in one case, an imaginative image twist algorithm (Figure

7.13 (d-f)).

7.2.6 Phase 4

Working in pairs on the final project of writing the color transfer program, two thirds of Clemson

students were able to provide a correct solution for the color transfer algorithm, generating the effects in

Figure 7.14. Similarly, two thirds of Covenant College students were able to complete a correct solution.

7.2.7 Survey Results

In the Fall of 2005 at Clemson, students were randomly assigned to two different curriculum tracks:

theτέχνη track, and the standard track (called the control group). The control group learned programming

under the “Object Early” approach using Java and a GUI programming interface (BlueJ™). At the end of the

first semester, 20 students from theτέχνη group and 16 from the control group completed surveys. Charts

65



www.manaraa.com

(a) Original (b) By A. McNaughton (c) By J. Menard

(d) By J. Lawing (e) By J. Davis (f) By J. Larkins

Figure 7.12:2006 Covenant CPSC 101 Phase 3

on the answers are coupled with answers on the second-semester survey. The questions covered students’

feelings about the courses and tested their skills.

7.2.7.1 View of the Course and Its Success

Questions were answered on a scale of 1-5, with 5 being the best and 1 being the worst. Table 7.1

below provides the means, medians, and standard deviationsfor both groups.τέχνη students felt they knew

the language more (P < .0025), considered the resources more useful (P < .005), would be more likely

to recommend CS (P < .01), more strongly considered CS a good decision (not significant), and felt they

expressed their creativity more than the control group (P < .0005). The control group slightly preferred

working with others, and reported nearly identical liking for CS and problem-based learning (all statistically

insignificant).

τέχνη students outperformed the control group on all skills tests, but not all mean difference were

statistically significant. The population sizes were not large enough to justify t-tests for differences in means,

so we used a Monte Carlo version of Fisher’s permutation test[24]. τέχνη students’ feelings about creative

expression, language knowledge, and recommendations weresignificantly (0.05 or better) better than the

66



www.manaraa.com

(a) By C. Stow (b) By J. Lewis (c) By T. Wigboldy

(d) By A. Musser (e) By A. Musser (f) By A. Musser

Figure 7.13:2006 Covenant CPSC 101 Phase 3

(a) Original (b) Bright colors (c) Sunset

Figure 7.14: 2005 CPSC 101 Phase 4 Color Transfer

67



www.manaraa.com

(a) Bright color source (b) Sunset source

Figure 7.15: CPSC 101 Phase 4 Color Transfer Sources

τέχνη Control
Mean Median Std. Dev. Mean Median Std. Dev.

Know language 3.2 3 .93 2.3 2 .70
Like CS 2.0 2 1.21 2.0 2 .63
Like working with others 2.2 2 .88 2.2 2 .91
Useful resources 4.2 4 .59 3.5 4 .82
Recommend CS 3.9 4 1.02 2.9 3 1.29
CS right decision 4.2 4.5 1.09 3.6 4 1.09
Expressed creativity 3.4 3 1.14 2.1 2 .77
Prefer PBL 2.9 3 1.37 2.9 3 1.59

Table 7.1: 2005 101 Comparison

68



www.manaraa.com

control group, as were their performances on the code reading test.

7.2.7.2 Classroom Environment Survey

Walker and Fraser [72] report a strong correlation between conventional measures of student perfor-

mance (grades, test scores, etc.) and perceptions of the classroom environment. Based on their observations

of numerous studies, we used 28 items of their 36-item surveyto gauge students in five areas: instructor

support, personal relevance, authentic learning, active learning, and student autonomy. The sixth category (8

questions) covers student interaction and collaboration,and while Quest-Oriented Learning does encourage

open problem discussion (but individual work), many instructors still restrict student interaction, rendering

the results in that category less meaningful. During the 2006-2007 school year (one year after the previously

Table 7.2: 2006-2007 101 Walker-Fraser Surveys

mentioned surveys), three sections ofτέχνη 101 were given the Walker-Fraser classroom environment per-

ception survey. The surveys were taken by seven students from one section, eleven from the second, and

thirteen from the third. Since all three courses were to follow theτέχνη model, the only thing that can be

shown by the survey results is the consistency of the coursesbetween semesters and instructors, See 7.2.

Active learning and student autonomy seem to be the strongest points of this and many of theτέχνη courses.

7.3 Computer Science II

In CS2, students now create raytracers as was originally done in the experimental 215 course. The

students work toward the final raytracer in phases, resulting in attractive, realistic images. These raytracers

depend on the use of structures, unions, function pointers,trigonometric functions, and eventually justify the

use of object-oriented programming.

69



www.manaraa.com

7.3.1 Images at Clemson University

Despite the few geometries covered in class, students in theSpring 2006 course produced creative

images (Figure 7.16, published in [17]). Students seemed enthusiastic about the project, evidenced by course

evaluations and the quality of work. Students routinely went beyond the requirements of the projects to

produce more advanced effects that they could show off [17].

Figure 7.16:2006 CPSC 102 Student Images

7.3.2 Final Phase at Covenant College

The Spring 2007 class at Covenant College was composed of twocomputer science majors, seven

pre-engineering majors (on track to finish at Georgia Institute of Technology), and three mathematics majors.

Despite a minority of computer science majors, the studentsdemonstrated immense creativity with their

raytracers, as seen in Figure 7.17.

70



www.manaraa.com

(a) Final Student Image (b) Final Student Image

Figure 7.17:2007 Covenant College CS2 Images

7.3.3 Survey Results

Continuing with the two groups begun in the fall of 2005 for CPSC 101, students were in two groups

for CPSC 102 with the control group using the standard approach (Java without a GUI interface in the Unix

environment). Due to a technical problem with the web surveys, the surveys were not given to students

until the beginning of the third semester (data structures)course. Nineτέχνη students and nineteen control

group students participated in the surveys, and the resultsof the surveys are in Tables 7.3 and 7.4. Overall,

τέχνη students reported better feelings toward CS and teamwork (insignificant), were more likely to think

CS was the right decision (not significant), were better ableto express their creativity (P < .02), and were

more likely to recommend CS (insignificant). The control group felt they knew their language at a slightly

higher rate, preferred PBL, and considered the resources ashelpful at theτέχνη students did (all statistically

insignificant). The means, medians, and standard deviations of the questions are in Table 7.5. Once again,

τέχνη outperformed the control group in all skills assessments. The skills assessment section was composed

of eight questions covering data representation, a basic linked-list function, writing a recursive function, the

recognition of a sorting algorithm (quicksort), and prediction of the number of times the algorithm will loop.

See Table 7.4 for 101-102 skills comparison and the overall skills assessment for 102. The average results

were significantly better forτέχνη students(P < .01).

71



www.manaraa.com

(a) Able to Express Creativity (b) Feelings Toward CS

(c) Believe CS to be the Right Decision (d) Likeliness to Recommend

(e) Knowledge of the Language (f) Willingness to Look Up Problems

Table 7.3: 2006 Student Perceptions of 102

72



www.manaraa.com

(a) Logic Questions Answer Right (b) Code Reading Abilities

(c) Code Writing Abilities (d) 102 Overall Skills

Table 7.4: 2006 102 Skills Comparison

τέχνη Control
Mean Median Std. Dev. Mean Median Std. Dev.

Know language 3.2 3 1.2 3.3 3 .7
Like CS 4.2 4 .8 3.9 4 .8
Like working with others 4.0 4 .7 3.8 4 .9
Useful resources 4.1 4 .6 4.1 4 .8
Recommend CS 4.0 4 1.1 3.5 4 1.3
CS right decision 4.6 5 .9 3.9 4 1.2
Expressed creativity 4.1 5 1.2 3.0 3 1.1
Prefer PBL 3.3 3 1.2 3.7 4 1.2

Table 7.5: 2006 102 Comparison

73



www.manaraa.com

7.3.3.1 Classroom Environment Survey

In the spring of 2007, the two sections of 102 took the Walker-Fraser survey, seventeen from one

section and nine from the other. Both courses were taught through the implementation of a raytracer and

show similar results. See 7.6 (a). Additionally, that semester saw the last of the pivotτέχνη 215 taught with

the raytracer, and six of those students took the survey. Forlack of a better comparison point, the pilot 215

course is compared with the 102 course results 7.6 (b). Results are very similar and demonstrate strong active

learning and student autonomy.

(a)τέχνη 102 (b) raytracing courses

Table 7.6: 2007 Walker-Fraser Surveys of raytracing Courses

7.4 Second-Year Data Structures Course (212)

In this second-year course on algorithms and data structures, students used an algorithm by Hoppe,

DeRose, Duchamp, McDonald, Stuetzle [31] to reconstruct surfaces from unorganized points. This project

required the use of advanced tree structures, sorting, graphs, and other typical topics in data structures. The

description of this application ofτέχνη to Algorithms and Data Structures has been accepted for presentation

at Eurographics [22] and contains these images showing the phases of surface reconstruction. Figure 7.18 (a)

shows the 4102 points representing the mechpart used by Hoppe et al. and used in this course.

7.4.1 Phase I: Tangent Plane Estimation

Tangent plane estimation uses a kd-tree to organize the points, allowing efficient location of the

nearest neighboring points. Normals are computed using principal components analysis. See Figure 7.18(b).

74



www.manaraa.com

(a) Mechpart points (b) Tangent plane normals

Figure 7.18:2006 CPSC 212 Phase 1: Tangent plan estimation

7.4.2 Phase II: Consistent Tangent Plane Orientation

This phase utilizes a minimum spanning tree and a priority queue to generate consistent tangent

plane orientation. See Figure 7.19(a).

(a) Consistent plane orientation (b) Signed distance function (c) Triangulated surface approxima-
tion

Figure 7.19: 2006 CPSC 212 Phases 2-4

7.4.3 Phase III: Signed Distance Function

This phase re-uses the kd-tree to construct a signed distance function on 3D space, where distance

is measured to the nearest surface tangent plane. See Figure7.19(b).

7.4.4 Phase IV: Contour Tracing

This phase uses the marching cubes algorithm to extract the final surface approximation from the

signed distance function. See Figure 7.19(c).

75



www.manaraa.com

The problem for this course was quite difficult and students seemed at times to be overwhelmed. The

paper [22] explores improvements that may be made, such as beginning immediately with 3D representations

instead of an introductory 2D representation and narrowingof the breadth of potential algorithms and data

structures compared (e.g. Kruskal’s vs. Prim’s algorithm,Euclidean MST vs. Riemannian graph, Fibonacci

heap vs. binary heap) in order to keep the focus and momentum of the course.

7.4.5 Survey Results

In the 2006-2007 school year, students were given the Walker-Fraser survey to assess classroom

environment, and in the fall of 2006, tenτέχνη students turned in the surveys. Unfortunately, not a single

student from the control group participated in the end-of-semester survey. Therefore, comparison of the 212

τέχνη group to the control group is impossible. However, eleven students in the following semester 212

course, again taught with the standard approach, did take the survey and can be used for comparison.

Table 7.20 (a) demonstrates thatτέχνη students perceived the class environment to have more au-

thentic learning, but reported below the control group in all other areas. This dip implies that, although stu-

dents perceived that they were studying were real-world problems and solutions, other aspects of the course

suffered, perhaps due to previously discussed issues. Future implementations of the course will seek to better

support the classroom environment in all areas.

(a) 2006-2007 CPSC 212 Comparison (b) 2007 215 Walker-Fraser Results

Figure 7.20: 2006-2007 CPSC 212-215 Comparisons

76



www.manaraa.com

7.5 Second-Year, Tools and Techniques for Software Development (215)

In this three-hour course, students learned Java and OO design in order to write a GUI-based, net-

worked chess game. Since Java was new to most of them, the students worked in pairs or groups of three.

7.5.1 Student Programs

The project was done in four phases, the first three of which were checkers games (Figure 7.23.

Once the students had all the components of legal piece movements and networking in place, the games were

converted to chess (phase four). Students were encouraged to add extra credit features to their games, and all

did. Features included selectable piece shapes (7.22 (b)) and colors (7.23 (b)), menus (7.23 (b)), antialiased

graphics (7.23 (a)), chat windows 7.23 (b), choice of screenname (7.23 (a)), choice of networking or local

game (7.23 (a)), and many other options.

(a) Game by M. Rardon and B. White (b) Game by C. Daugherty, J. Canter, and Y. Feaster

Figure 7.21:2007 CPSC 215 Student GUI Checkers Games.

77



www.manaraa.com

(a) Game by M. Rardon and B. White (b) Game by A. Webber, B. Sterrett, and J. Leyh

Figure 7.22: 2007 CPSC 215 Student GUI Chess Games.

7.5.2 Survey Results

7.5.2.1 Walker-Fraser

In Spring 2007, six students in the pilot 215 (raytracer) course and nine from the new 215 course

took the Walker-Fraser survey. While the results of the raytracer course have already been shown with 102

results, it may be of interest to see the courses compared in the Table 7.20 (b).

7.5.3 Quantitative Results

In the spring of 2007, 13τέχνη 101 students, 26τέχνη 102 students from two sections (seventeen

and nine, respectively), eleven non-τέχνη 212 students, six pilot 215 students, and nineτέχνη 215 students

answered two questions testing understanding of the computer memory model, one on OO design, and one

that involved writing an algorithm to solve a simplified programming contest question. The OO design

question presented the idea of a Singleton design pattern and provided multiple choice answers for what type

of functions and attributes would be necessary to create a Singleton class. The question seems to have been

above the levels of the students, and 102 students who had little OO exposure were the most likely to get the

answer correct. The simplified programming contest question was not attempted by most people, and though

78



www.manaraa.com

(a) User Name and Host Input

(b) Chat Window

Figure 7.23: 2007 Features in Chess Game by Seagers, Musselman, and Squires

79



www.manaraa.com

many of those who tried achieved answers that were nearly correct, very few were able to correctly answer

it. See Table 7.7.

More encouraging were the results of the memory data representation questions. First, the array

representation question was correctly answered by a littlemore than a quarter of the non-τέχνη 212 course,

with τέχνη 215 a close second. The question tested students’ knowledgeof the storage of 2D arrays as flat

arrays in memory.

The other question asked students what the expression, “while (*t++ = *s++);” achieved. The

majority of the second yearτέχνη students recognized the operation as a string copy. Second-year students

who began with C were substantially more likely to understand the expression than those who had not. Inter-

estingly enough, Joel Spolsky refers directly to this fast string copy, saying “I don’t care how much you know

about continuations and closures and exception handling: if you can’t explain why ‘while(*s++=*t++);’

copies a string, or if that isn’t the most natural thing in theworld to you, well, you’re programming based

on superstition, as far as I’m concerned: a medical doctor who doesn’t know basic anatomy, ....” (Advice for

computer science college students, January 2005, http://www.joelonsoftware.com/).

(a) OO and Problem Solving (b) Data Representation

Table 7.7: 2007 215 Walker-Fraser Results

7.6 Retention

In the fall of 2005, 31 students started inτέχνη 101, and 30 started in the control group 101. In

the spring of 2007, ten of theτέχνη students completedτέχνη 215 (nearly one third), and six of the control

group completed the pilot 215 (one fifth). See Table 7.8. One student from each course was off schedule due

80



www.manaraa.com

to involvement in coop experiences, one from each was a Computer Engineering major, one from the control

group was a Chemical Engineering major and one was a General Engineering major, and one fromτέχνη and

three from the control group were behind due to failing a course. Thus, both groups retained 13 students in

some form. The others either left Clemson University or transfered to unrelated fields. While the retentions

may appear similar, students in theτέχνη approach were more likely to stay computer science majors and to

pass the classes. One may speculate that theτέχνη courses provide the motivation to keep students on track,

but more information is needed to come to that conclusion.

Table 7.8: Retention

7.7 Observations

In addition to an insignificantly better retention rate, better performance on one-year skills assess-

ment, and improved enjoyment of the CS major, some positive observations have been made about the stu-

dents who have come through the first four-semester sequenceof theτέχνη curriculum. First, students of this

group consistently started assignments early enough to complete them on time. Inτέχνη 215, only one team

on one assignment was unable to complete the program on time.In contrast, a large minority of students in

the control group turned in assignments late or incomplete.The behavior of the experimental group is counter

to the culture of procrastination typical with beginning computer science students, and may be due to the size

of the assignments, the interest generated by the assignments, and the expectation of others in the class that

starting early was the right approach, by virtue of the previous two reasons.

Second, the students in the experimental group seemed to getalong uncommonly well. The cama-

81



www.manaraa.com

raderie was evidenced by the nearly universal initiative onthe part of the students to help each other with

non-academic problems, such as when one student was hospitalized. Additionally, in the fourth semester,

when teams were required for every class assignment, team selection for the students was quickly (and ap-

parently easily) done, even with groups who had not previously worked together. Not one team from the

experimental group ever complained of team or teammate problems, and all their assignments were good

quality.

Finally, students who learned underτέχνη seem to exhibit less than the typical hubris associated

with computer science students. While students were confident in their abilities to solve problems, no student

seemed to think himself/herself better than any other student, despite acknowledged differences in skills.

Students were comfortable enough with each other to discusscomparative strengths and weaknesses while

breaking up projects. This importance of these students’ abilities to work together well may be seen by

comments made by the founder and chairman of the world’s largest software company. On May 30, 2007,

Microsoft Chairman Bill Gates and Apple CEO Steve Jobs were interviewed by Kara Swisher and Walt

Mossberg at the D5 conference. During the following question and answer session, Gates stated that one of

the greatest challenges in building Microsoft, and the areain which he likely made the most mistakes, was

getting people with broad skills sets to work well together.Thus, being an asset to a company is more than

being a good researcher and programmer but also requires thesocial skills to put those talents to use.

It appears thatτέχνη students, with their significantly better computational problem solving skills at

the one-year assessment (compared to the control group), their apparent abilities to work with and learn from

others, and their expressed creativity, are on track to becoming what we define as “good computer scientists.”

They are more likely to remain computer science majors and are likely better suited for upper-level classes

and industry careers with their disdain for procrastination, comfort with teamwork, and open-mindedness to

other programmers’ ideas. We eagerly anticipate their success in future classes and in following careers.

82



www.manaraa.com

Appendices

83



www.manaraa.com

Appendix A CS1 Guide

A.1 Credits

4 (3 hours lecture and 2 hours lab)

A.2 Prerequisites

MTHSC 105, or satisfactory score (520) on the Mathematics Level II Achievement Test, or consent

of the instructor. Students are not expected to have programming experience. Nevertheless, this is not a

general introduction to computing. It is intended primarily for computing majors and minors.

A.3 Course Goals

This course teaches the following computer science skills and techniques:

• Understanding the basic process of problem-solving using acomputer.

• Understanding the basic machine memory model.

• Developing competence in the Unix environment.

• Developing the ability to implement simple computer programs.

A.4 Course Description

This course, like allτέχνη courses, is based on a large, semester-long project from thevisual prob-

lem domain. CS1 is focused on the implementation of a color transfer program that will apply the color

scheme from one image to another. The project is done in phases, beginning with the creation of a simple

image file.

A.5 Resources

For image processing, a good reference isDigital Image Processing, 2nd edition by R. C. Gonzalez

and R. E. Woods. (2001. Addison-Wesley Longman Publishing Co., Inc. ).

For color transfer, the source paper is a great reference:Color Transfer between Images.by E.

Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley (2001. IEEEComput. Graph. Appl. 21, 5 (Sep. 2001),

34-41.)

84



www.manaraa.com

A.6 Lesson Guide

A.6.1 Suggested Course Policies

• Recommended textbooks:The C Programming Language, Second Editionby Brian W.

Kernighan and Dennis M. Ritchie andBulletproof Unixby Tim Gottleber

• Required service:http://www.turingscraft.com/ Codelab is an online service the students must pay

for that provides an opportunity for practicing programming with immediate feedback. Sections (or

department/school) can be assigned with deadlines at the instructor’s discretion. One approach that has

been found to be effective is to require each student to complete 100 exercises before receiving a copy

of the midterm examination and 200 exercises (total) beforereceiving a copy of the final examination.

The benefits of this approach include allowing students to work at their own pace and reduced pressure,

since the exercises are not included in their grades.

• Presentations. Each student should do one 5-minute presentation on a topic helpful to the class that

will not be incorporated into the lecture or lab class. Thesepresentations can be done each day during

the opening minutes of class. The purpose of these presentations is to educate students on how to

find information about a topic and how to explain it to others.Suggested topics for this class are

Unix commands. Once the students have learned about “man,” they can easily look up and present

information about any other typical Unix command. For a listof possible topics, see the terms used in

the example ice breaker below. Students should name the command, explain the reason for its name,

explain its typical useful, and demonstrate how to use it.

• Assignments

– On-time assignments have a maximum value below 100% to encourage the addition of extra

credit features.

– Style contributes to assignment grades. Suggested style guidelines:

* Use a fixed number of spaces for each indentation. Be consistent. Pick a number and stay

with it.

* Use the space bar to indent to avoid differing interpretations of tab size.

* Every C statement must begin on a separate line.

85



www.manaraa.com

* If the condition for execution, such as in a while or if statement can be written in the form

“(constant==var)” it should not be written in the form “(var==constant)”.

* Comments must be included when they will aid the reader in understanding the program.

* Use meaningful variable names. Long names are better than short, unclear names.

* Avoid the single letter ‘o’ and the single letter ‘l’ for variable names.

* Use white space (hard returns) to set off logical ideas.

* Keep functions short.

• Academic Dishonesty: Some forms of collaboration are beneficial to all and enhance learning; oth-

ers are not. A clearly stated policy is important. Suggested: cheating will be taken very seriously,

resulting in harsh penalties. Since the skills required in this class are also required in the next class,

cheating in this class will seriously hamper your ability tobe successful in the next class. Appropriate

Collaboration:

1. Sharing class notes with another student.

2. Discussing anything that was covered in class.

3. Helping a fellow student locate a bug in his program, provided the following are true:

– The helper has already completed his program.

– The helper never types or dictates code for the other student.

– The helper helps with minor details of small sections, not solving the programming problem

for him.

– The helper signs the other student’s honesty sheet. An honesty sheet is a paper listing any

help received on an assignment, including the date, the nameof the person, the type of help,

and the signature of the person. At the bottom of the page, thestudent must sign that he did

the assignment completely by himself with the exception of the listed help, which was all in

line with the honesty rules.

Inappropriate Collaboration

1. A student showing another student his code.

2. A student copying code from another student.

86



www.manaraa.com

3. A student stepping another students logically through the program. (Giving his the key to solving

the problem.)

4. A student helping other students during a test or quiz.

5. A student doing another student’s work (including onlineassignments).

A.6.2 Ice Breaker

In order to prevent the students from feeling isolated in a new environment with all new information,

students should be given the opportunity to get to know each other. Any method of socialization can be used,

and below is one possible game in which the instructor first prepares a large collection of pairs of cards

containing matching terms. The goal for the student it to findthe matching term:

1. Pick a card.

2. Get a pen and paper (or a PDA and a stylus) ready.

3. When directed, find the person with the matching card. (1-2minutes)

4. Tell each other your names, where you are from, your majors, and why you are taking this class. (If

this class is required, why you are in the major that requiresthis class.) (2-3 minutes)

5. Give the person at least one good way to contact you (email,phone number, IM account). Write down

his name and contact information.

6. When directed to, introduce yourself to 3 more people and get contact information from them. (2

minutes)

Cards: On each card, put 1) the term or definition for the card and 2) the matching term/definition the student

is looking for. Examples:

1. Kernighan – Ritchie

2. cat – display file contents

3. chmod – set permissions

4. cd – change directory

5. cp – copy

87



www.manaraa.com

6. dos2unix – convert windows files to unix files

7. find – locate files

8. gzip – compress files

9. gunzip – decompress files

10. head – print beginning of a file

11. ls – list files

12. man – manual

13. mkdir – make a directory

14. more – displays one screenful at a time

15. mv – move

16. passwd – change password

17. ps – process status

18. pwd – print working directory

19. rm – remove

20. rmdir – remove directory

21. sftp – secure file transfer protocol

22. ssh – secure remote shell

23. tail – Print end of a file

24. tar – tape archive

25. vi – text editor

26. vim – vi improved

88



www.manaraa.com

A.6.3 Background Information

1. History of Computing

• 1623: Mechanical calculator. Wilhelm Schickard invented the first known mechanical calculator,

which was capable of simple arithmetic. A similar mechanical adding machine was built in the

1640s by Blaise Pascal. It is still on display in Paris.

• 1673: More advanced mechanical calculator. It was created in 1673 by German mathematician

Gottfried Leibniz, and it was capable of multiplication anddivision. It was purely mechanical

with no other source of power.

• 1823: Charles Babbage began work on the Difference Engine. He designed it, but it was com-

pleted by a Swedish inventor in 1854.

• 1833: Charles Babbage began work on the Analytical Engine. It was never completed, but it

introduced an important concept: a general-purpose machine capable of performing different

functions based on programming.

• 1834: Ada Byron (Lady Lovelace, daughter of poet Lord Byran)was impressed with the concept

of the Analytical Engine at a dinner party. She created plansfor how the machine could calcu-

late Bernoulli numbers. This is regarded as the first “computer program,” and she as the first

“programmer.” The Department of Defense named a language “Ada” in her honor in 1979.

• 1890: punched cards were used by Herman Hollerith to automate the Census. The Concept of

programming the machine to perform different tasks originated from Babbage. Punched cards

were based on Joseph Marie Jacquards device to automate weaving looms. Hollerith founded a

company that became International Business Machines (IBM)to market the technology.

• 1939: prototype of the first electronic computer. It was assembled by John Atansoff and Clifford

Barry. John Atansoff proposed the concept of using binary numbers. Completed in 1942 using

300 vacuum tubes, it could solve small systems of linear equations.

• 1946: ENIAC (Electronic Numerical Integrator and Computer) was completed by Presper Eckert

and John Mauchly. It used 18,000 vacuum tubes and occupied a 30 by 50 foot room. It could be

programmed by plugging wires into a patch panel. Because this style of programming required

intimate knowledge of the computer, it was very difficult to do.

89



www.manaraa.com

• 1946: John von Neumann architecture stored-programming concept. He (and others) suggested

that programs and data could be represented in a similar way and stored in the same internal

memory. All modern computers store programs in internal memory.

• Four generations of computers

(a) Vacuum tube (1939)

(b) Transistor (invented in 1947, used in IBM 7090 in 1958)

(c) Integrated circuit or chip (invented in 1959, used in IBM360 in 1964), which is a small wafer

of silicon that has been photographically imprinted to contain a large number of transistors.

(d) Large-scale integration: microprocessor (1975). The entire processing unit is stored on a

single chip of silicon.

• In the early 1970s, Robert Noyce, one of the inventors of the integrated circuit and founder of

Intel speaking of a computer chip compared to the Eniac: “It is 20 times faster, has a larger

memory, is thousands of times more reliable, consumes the power of a light bulb rather than that

of a locomotive, occupies 1/30,000 the volume and costs 1/10,000 as much” (Source: Roberts,

Eric S.The Art and Science of C. Addison-Wesley Publishing Company, 1995).

2. Computer Hardware

• Central Processing Unit (CPU)

– Brain of the computer

– Performs the actual computation and controls the activity of the entire computer.

– In current computers, a CPU is an integrated circuit

* Consists of a tiny chip of silicon with millions of transistors imprinted onto it.

* Capable of carrying out simple arithmetic and logical operations

• Primary Storage: Main Memory

– Type of data storage device: a piece of hardware capable of storing and retrieving information

– Storage device used while the program is actively running

– Current computers use RAM (random access memory) chips.

* Random access means that any location can be accessed at any time. (Like a DVD as

opposed to a cassette tape.)

90



www.manaraa.com

* Built from a special integrated-circuit chip

* Very fast, but relatively small

* Data is lost when the computer is turned off.

• Secondary Storage

– Hardware device that stores permanent data.

– Slower than RAM.

– Current computers use magnetic disks for data storage, circular spinning platters coated with

magnetic material, as well as optical storage, and solid state disks.

– Examples:

* Hard drive

* Floppy disk

* CD or DVD (optical)

* Flash drives (solid state)

• I/O (Input/Output) Devices

– These devices are the tools by which the user communicates with the computer

– Examples of input devices:

* Keyboard

* Mouse

* Touch screen

* Scanner

– Examples of output devices:

* Graphics card

* Screen

* Printer

* Speaker

• Bus. The components (CPU, GPU, primary storage, secondary storage, I/O devices)are all con-

nected by a communications bus.

91



www.manaraa.com

• Graphical Processing Unit(GPU): high end graphics cards have processors, called GPUs, that

handle a great deal of image processing for display and rivalCPUs in overall processing capabil-

ity.

3. Computer Science

• Related Terms

– Programming: providing a computer with a set of instructions

– Software: the name for programs created for a computer. A sequence of steps that can be

interpreted by the hardware of the computer.

• CS Definition: The creation of the steps necessary for a computer to solve a problem.

• CS Definition: “the science of problem solving in which the solutions happen to involve a com-

puter” (The Art and Science of Cby Eric S. Roberts. Addison-Wesley, 1995).

4. Exercise in giving instructions. This suggested exercise exposes students to the concepts involved in

giving precise instructions to a machine and thus how a CPU works. Together, the students work out

the commands needed by a robot to perform addition.

• Robot’s Abilities

(a) Speaks and understands English.

(b) Can read and write any word or number.

(c) Can search for a number or word, given a starting and ending point.

(d) Obeys any written command it understands.

• Limitations

(a) Does not have short term memory. (It cannot even remembera number if it does not write it

down.)

(b) After it performs an instruction, it immediately forgets what it did.

(c) Cannot do arithmetic at all.

(d) Cannot count.

(e) Cannot make decisions. It simply obeys commands.

(f) Can obey only 2 spoken commands:

92



www.manaraa.com

– “Write the following instructions at location xxx: . . .”

– “Begin sequentially following instructions starting at location xxx.”

• Resources

(a) Has a list of numbers 1 through 10 at the location on the board starting with 100.

(b) Has a list of blanks for writing numbers or words startingat location 200.

(c) Has a list of blanks for writing instructions to follow starting at location 300.

• Tasks

(a) Give instructions to a robot to add 6 and 2 and give the answer in the format “Six plus two

equals xxx.” The class will work through this. It will take a few tries to understand the

problem and solution, so do not be afraid to guess.

(b) Break up into groups of five (5) and make instructions for arobot to add any two numbers

from 1 to 10 whose sum is no larger than 10. (e.g. 4+5, 3+7, etc.) Same format for answer:

“xxx plus xxx equals xxx.”

(c) In your same group, make instructions for a robot to add any two numbers from 1 to 100

whose sum is no larger than 100. (e.g. 53+37, 95+2, etc.)

(d) Participate in instructor-led discussion of how this example relates to real computers.

• Example solution

(a) Write the following instructions beginning at location300.

i. Write the number “6” at location 200.

ii. Write the number “2” at location 201.

iii. Write “100” at location 202 to represent the starting location for the search for the num-

ber stored at location 200.

iv. Check if the memory location stored at 202 holds the same number as is stored at location

200. As long as it does not, update location 202 to hold the next memory address. (After

this loop is complete, location 202 holds the address of the number held at location 200

(6).)

v. Write “100” at location 203 to represent the starting location for the search for the num-

ber stored at location 201.

93



www.manaraa.com

vi. Check if the memory location stored at 203 holds the same number as is stored at location

201. As long as it does not,

A. Update location 202 to hold the next memory address.

B. Update location 203 to hold the next memory address.

vii. Write on the board the value at location 200, then “ plus ”, then the value at location 201,

then “ equals ”, then the number at the location stored at location 202.

(b) Execute instructions from line 300.

5. Introduction to levels of languages

(a) Lowest level: absolute machine code (binary code)

(b) Assembly language

• Symbolic representation of machine code

• Translated into binary code with an assembly

(c) High-level language/Compiled Language

• One high-level command translates to many assembly commands

• A compiler converts the high-level source code into machinelanguage for the appropriate

computer

(d) High-level language/Interpreted Language: similar to a high-level language butthe translation

from the high-level command to machine code it performed at run-time.

6. Introduction to compiler concepts. A compiler is a program that converts a higher-level language to a

lower-level language.

7. Introduction to the types (levels) of software

• Application Programs, e.g. editors

• Utility Programs, e.g. compilers

• Operating Systems

8. Introduction to the Unix operating system: history of Unix.

• 1964: AT&T Bell Labs, General Electric, and MIT wanted to create a multi-tasking, multi-user

operating system.

94



www.manaraa.com

– Previous computers were single threading: one program at a time.

– The new operating system named Multics (MULTiplexed Information and Computing Ser-

vice)

• Four years later, Bell Labs withdrew from the project, sinceit was able to support only 3-4

concurrent users.

– The Multics team at Bell Labs missed the collaborative environment of all working in the

same room.

– Ken Thompson lost his game machine. (Space-travel simulation he developed on the Multics

system.)

– Thompson found an old Digital Equipment Corporation (DEC) PDP-7 computer and moved

his code over to that.

• The old Bell Labs Multics group starting developing code forthe PDP computer.

– This was the beginning of the Unix Operating System.

– Brian Kernighan named the system UNICS (UNiplexed Information and Computing Ser-

vice).

– In one month, Ken Thompson built the core of Unix.

– Bell Labs’ management asked about the new toy.

– Thompson said they were building a text-processing system.

• Management gave them a bigger computer.

– Unix was written in PDP-7 assembly.

– The group needed to transition the code from PDP-7 to the newer machine.

– The group decided to rewrite Unix in the high-level languageB (condensed BCPL), but B

was too slow (interpreted language).

• Dennis Ritchie created a new, high-level language called C with which they could rewrite Unix.

– Because Unix was written in a high-level language, it can be ported (moved) to other hard-

ware platforms (computers with different CPUs, memory, and/or peripheral devices).

– In the 1970s, Bell Labs was not allowed to sell software.

• The team gave away copies of the source code for free.

95



www.manaraa.com

– Unix source code is still shared today in the form of Linux.

– Unix and C became popular, because it offered tremendous computational efficiency, and

everyone could get it for free.

– Giving away code necessitated writing documentation aboutthe code.

• The team created documentation to go with the code in the formof man pages.

Source: Bulletproof Unix by Timothy T. Gottleber. PrenticeHall: 2003.

9. Introduction to C

• C was developed by Dennis Ritchie in the early 1970s.

• C is a structural, general-purpose, high-level language.

• The C language strongly reflects its tie to assembly languageand helps students understand how

the computer works.

• Statements in C are terminated by semicolons and spacing does not change the meaning of the

program.

A.6.4 Phase 1

Phase one of the semester-long, target problem is the creation of a 1-pixel image in Portable Pixmap

(PPM) format that is printed to standard out. Required Material: text editor, C compiler, library functions,

I/O functions, preprocessor directives, the main function, PPM format, binary data, ASCII data.

1. Create a program file. With a Unix environment, students can use GUI text editors or console-based text

editors. The benefit of console-based text editors is their availability through simple remote connections

such as ssh (secure-shell). While editors such asvi may be quite powerful, students are likely to

initially benefit more from simplicity of operation, and a simple editor such as pico might be a better

choice. Whatever they use, A C program file should be given a lowercase name and end with the.c

extension.

pico image.c

Once the file is opened, students can modify it as needed and save it.

2. Include the library functions needed to output information to standard out. A function is a group of

commands to be executed sequentially, and library functions are available to perform common tasks.

96



www.manaraa.com

In the case of this program, the only functions needed are thestandard input and output functions

specified in<stdio.h> file. These functions allow programmers to read data from thelogical file

called “standard in” (typically the keyboard) and to write data to the logical file called “standard out”

(typically the screen).

To gain access to the needed library functions, programmingmust “include” the file declaring them. In

C, the#include directive has the C preprocessor copy the contents of the filespecified into the current

file.

The C preprocessor is a tool for preparing a C source file to be compiled. Some of the things the C

preprocessor handles include removing comments (any text between an opening comment marker/*

and a closing comment marker*/), including specified files, and replacing constant names with their

values (such constants are defined with the#define directive).

3. Create the main function. The “main” function is the starting point of all C programs. To create the

main function, type the name “main” followed by open and closed parentheses (non-empty arguments

inside the parentheses will be used later) followed by an opening brace ({). After the code in the main,

the function is ended by a closing brace (}). Depending on the version of the compiler, the main may

be required to specify a return type ofint. It is probably best to delay an explanation of its meaning

until later.

4. Output to standard out a PPM image file header. Portable Pixmap (PPM) image format is a very

simple, uncompressed file format. The format consists of an ASCII header followed by binary image

data. Here is the format specification (in order as it occurs in the image file):

(a) A “magic number” for identifying the file type. A full-color, binary PPM image’s magic number

is the pair of characters “P6”.

(b) Whitespace (spaces, tabs, carriage returns, line feeds). NOTE: Characters from a “#” to the next

end-of-line character are comments and are ignored. Comments can occur anywhere in the PPM

header.

(c) The width, formatted as ASCII characters in decimal.

(d) Whitespace.

(e) The height in ASCII decimal.

(f) Whitespace.

97



www.manaraa.com

(g) The maximum color value in ASCII decimal. It must be less than 65536 and more than zero. The

most common value is 255, which indicates one byte per color component (R, G, B) per pixel.

(h) A newline character or other single whitespace character. Note that in Windows, new lines are

expressed as two characters. Be sure to restrict the whitespace after the maximum value to a

single character.

(i) The line of image data. This is a raster of “height” rows, in order from top to bottom. Each row

consists of “width” pixels, in order from left to right. Eachpixel is a triplet of red, green, and blue

samples, in that order. Each sample is represented in pure binary by either 1 or 2 bytes. If the

maximum color value is less than 256, it is 1 byte. Otherwise,it is 2 bytes. The most significant

byte is first. There is no whitespace between bytes. In particular, there are no newline characters

in the image data.

The header of the PPM file (all but the raster of data) is in ASCII file format. ASCII stands for American

Standard Code for Information Interchange. It is a character encoding used to represent text with values

in the range [0,127]. Since all information on a computer is represented numerically, characters must

also represented as numbers. Thus, in an ASCII (or text) file,each character is represented by a number.

For example, A is represented by 65, B by 66, C by 67, . . . and Z by90. Lowercase letters are in

the range 97-122. C provides functions for outputting ASCIIcharacters to standard out. One useful

function isprintf. printf is a function for formatting and printing (outputting) data. e.g.

printf ("Hello, World!\n");

Notice that “Hello, World!\n” is in quotation marks. These marks specify that

“Hello, World!\n” is text. Additionally, “Hello, World!\n” is in parentheses. These parentheses specify

that “Hello, World!\n” is an argument being passed to theprintf function. The above line of code

will output “Hello, World!” and a newline character to standard out. Output devices (displays, printers)

interpret the newline character as a signal to perform a linefeed and a carriage return. A backslash is

considered an escape sequence and the ‘\n’ character is a special sequence for representing a new line.

This character can be generated from the keyboard by typing “¡ctrl¿ j”. (Notice that the command ends

with a semicolon. C statements are terminated by semicolons.) Thusprintf can be used to output the

PPM header.

5. Output the binary image data to standard out. The image data is not ASCII but is instead in binary

format. The colors of the pixels in a PPM file (with a maximum value of 255) are represented by three

98



www.manaraa.com

#include <stdio.h>

main () {

printf ("P6\n1 1\n255\n");

printf ("%c%c%c\n", 255, 0, 0);

}

Algorithm .1: Output of a single-pixel image file

bytes. The first byte is the value of the red channel in the pixel, the second is the value of the green

channel, and the third is the value of the blue channel. A red value of of 0 is no red contribution, and

a value of 255 is full red contribution. Thus, if the bytes are255, 0, 0, the color is red. The bytes 255,

255, 255 represent white and 0, 0, 0 represent black. In the example image, only one pixel value needs

to be represented, and it will be represented by three bytes of data for the three color channels. The

data must not be converted to ASCII format. Note thatprintf("255, 0, 0"); would produce nine

bytes of output, not three. The printf function uses what arecalled “format codes” to specify how data

should be output. One such format code is%c. This format code forces the data to be output directly

without conversion to ASCII. Using this format code, a red pixel can be specified in the file with the

following command:

printf(’’%c%c%c’’, 255, 0, 0); This command creates the three bytes needed to represent a

pixel and gives them values specifying full red contribution with no green or blue contribution.

6. End the main function with a closing brace. The code to produce an image that has only one pixel with

a value of red is shown in Algorithm .1.

Thus, the whole program is the following code and will outputa single red pixel: Algorithm .1.

7. Compile the program. If the file is in a Unix environment, use thegcc compiler: the GNU project C

and C++ compiler. Thegcc compiler will convert a correct C/C++ program file into executable binary

code. The default location of the code isa.out. The location of the generated executable file (among

other things) can be specified by the arguments to thegcc command.

gcc image.c

8. Run the program and redirect the output to a different file. When the image program is executed, by

default its output will be printed to the screen. To send the output to a file, use “I/O redirection.” I/O

redirection allows the user to specify where standard output is written and from where standard input

99



www.manaraa.com

is read. Output is redirected using the “greater than” symbol:

./a.out > out.ppm

The file name can be anything, but it should end with the PPM extension for identification purposes.

9. View the output file. PPM is not a common image file, but it canbe viewed by Gimp, the GNU Image

Manipulation Program, which is freely available for many operating systems. The “display” command,

which is part of the ImageMagick package, is also available on most Linux systems. Additionally, Unix

provides a tool for converting PPM to the more common PNG format:

pnmtopng < out.ppm > out.png

or, with ImageMagick,

convert out.ppm out.png

A.6.5 Phase 2

Phase two is the creation of an 800 by 600 PPM format image. Required Material: variables, data

types, variable declaration, variable assignment, conditional expressions, variable incrementation, counted

loops.

1. Create a variable to keep track of the number of pixels thathave been printed. An image with a width

of 800 pixels and a height of 600 pixels has 480,000 pixels each made up of three bytes. Besides

being unnecessary, writing 480,000 printf statements is tremendously difficult. Instead, the computer

program can be instructed to repeat a command a specified number of times.

An instruction specifying that a block of code is to be repeated is called a “loop.” If the loop executes

a specified number of times, it is called a “counted loop.” A counted loop fits the problem of creating

480,000 pixels.

To use a counted loop, there must be a way to count how many times the loop has been executed. The

way to track information such as a counter is a “variable.” A variable is a named space in memory that

can store information. In this case, the information neededis an integer (a whole number). To create

an integer variable in C, specify that the variable is an integer and give it a name. The name can be

anything that starts with a letter and is made of only letters, numbers, or underscores. In C, variables

100



www.manaraa.com

#include <stdio.h>

main () {

int i;

printf ("P6\n800 600\n255\n");

for (i=0; i < 480000; ++i) {

printf ("%c%c%c", 255, 0, 0);

}

}

Algorithm .2: 800 by 600 image creation

must be declared at the top of the block of code. Thus, to create an integer named “i” to track how

many times the loop has executed, use the code shown in Algorithm .2.

2. Update the PPM header print statement to specify a width of800 and a height of 600.

3. Created a counted loop to output the 480,000 pixels. The counted loop in C is the “for” loop statement.

There are several parts to the for loop: the keyword “for”, aninitialization section for assigning the

starting value(s) to use in the loop, a test condition specifying how many times the loop repeats, a step

section for updating the variable(s) controlling the loop,and the block of statements to be repeated.

In the case of the image, the variable “i” should be given the beginning value 0. The condition for

looping is as long as “i” is less then 480,000. (Once it has reached 480,000, all the pixel values have

been printed.) The step section should increment “i” to the next numerical value. To assign i to a value

of zero, use the expressioni=0;. To test whether i is less then 480,000, usei < 480000;. Note that

comments are not used in numbers in C. To increment i to the next value, use the operator++. The++

operator changes the value of the variable to be the next whole number. The block of statements to be

looped through is contained between opening and closing braces.

4. Compile and execute the program, redirecting the output to a .ppm file. The resulting image should be

a solid red image of size 800 by 600. For extra credit, students may add stripes or patterns.

A.6.6 Phase 3

Phase three is reading a file (image file) and printing it back out. This phase draws from previous

knowledge and is working toward the goal of reading in images, manipulating them, and outputting them.

Required Material: standard input, file streams, unsigned char, conditional loops, bytes, binary data.

1. Create a new file that #includesstdio.h and has a main.

101



www.manaraa.com

2. Create a variable to hold each datum as it is read read from the file. Since the file to be read is a PPM

image file, the variable must be able to hold ASCII charactersand bytes of image data. A “byte” is 8

bits or 8 binary digits. All data on a computer is stored as binary digits (0 and 1). One binary digit (bit)

can have two possible values: 0 or 1. Two binary digits can holds four possible values: 00, 01, 10, and

11. Eight digits can hold 256 different values.

The data typeunsigned char holds a byte of data with values in the range [0,255] (256 different

values). Unsigned chars can thus hold ASCII values which arein the range [0,127] and the bytes of

image data, which are in the range [0,255].

3. Read in the first character in the input file “stream.” (In a PPM file, the first character is ’P’.) A file

stream is an access point for a file within a program. Opening anamed file within a program will

provide the associated access point or stream name. Standard input is always open, and its stream

name isstdin. Each time a character is read from a stream, the location from which to read the

next character is moved forward. Thus, sequential reads result in sequential values from the stream.

A library function in C that can be used to read characters from a stream isfgetc. (scanf, fgetc,

andgetchar are others.)fgetc starts with an “f” to indicate it is a file stream-related function, and

“getc” indicates that is gets (reads) a character.fgetc returns a character read from the specified input

file. The input file used for this program is standard input with streamstdin in C. To store the value

returned from the function, assign to “ch” the result of the functionfgetc().

4. If the value assigned toch is valid data and not a marker indicating the end of the file, print it out, and

continue to read and print out bytes of data as long as the values are valid. The ends of files in computer

file systems are marked with what is called an “end of file” (EOF) character. The actual value of EOF

is system dependent, but C provides a function (feof) that indicates if the EOF character has been

read. The EOF character must have already been read forfeof to confirm that it has been read.feof

requires one parameter: the file stream which is being read from: stdin. Therefore to test if the EOF

character has already been encountered, usefeof(stdin);. This function returns a value of zero if

the end of file has not been encountered yet and a non-zero value if it has. As long as the program has

not encountered the end of the file, it should print out the character just read and read a new one. This

process may be repeated many times. Unlike the previous example of printing an image however, the

actual number of times the commands must be repeated is unknown.

A conditional loop allows a group of commands to be repeated for an unknown number of times based

102



www.manaraa.com

#include <stdio.h>

main () {

unsigned char ch;

ch = fgetc (stdin);

while (feof(stdin) != 0) {

printf ("%c", ch);

ch = fgetc (stdin);

}

}

Algorithm .3: Complete program to read in and print back out a file

on a given test condition. In C, conditional loops are called“while” loops. These loops repeat while

a given condition has a non-zero value. (In C, zero is false and non-zero is true.) To repeatedly read

characters, confirm they are not at or past the end of the file, and print them out, use a ‘while’ loop. The

while loop has 3 parts: the keyword “while”, the condition inparentheses, and the block of statements

to repeat inside opening and closing braces. The condition for looping for this program is to continue

as long asfeof returns a false value. Since while loops continue for true values (not false values), the

returned value offeof must be negated, using the “!” operator. A “!” before a true expression results

in a false expression, and a “!” before a false expression results in a true. Algorithm .3 pulls all this

together: testing whether standard in has been read past theend of file, printing out the character read,

and reading the next character.

5. Compile and run the program, redirecting input using the< filename notation and redirecting output

using the> filename notation:

./a.out < image_in.ppm > image_out.ppm

A.6.7 Phase 4

Phase four is reading a PPM image file and outputting the width, the height, and the total num-

ber of pixels in the image. Obtaining this information requires knowledge of the image format, unlike the

mere copying performed in the previous stage. Required knowledge: reading integers, addresses, character

comparisons, nested loops, if statements, unreading data,error conditions, function return values, functions,

boolean expressions, multiplication, checking for whitespace, stdlib.h, ctype.h.

1. As well asstdio.h, #include thestdlib.h andctype.h files. The program will be reading and

103



www.manaraa.com

altering a PPM file, and it must be confirmed immediately that the user indeed provided an image in

PPM format as expected. If the user did not, an error message should be printed, and the main function

should return a value indicating its failure.stdlib.h provides constants for indicating the success and

failure of the main function.ctype.h declares functions for determining the type of data read in and

will be useful in removing the commands and spaces in the file.

2. Declare a function for skipping over the whitespace and comments in the image file. The function will

not return a value and should thus be marked as “void.” The name may be anything.

3. Begin the function by reading in a character and determining whether it is a pound sign (#) or a whites-

pace character (e.g. a space, tab, carriage return, new line, etc.). If it is whitespace, it should be

skipped. If it is a #, the remainder of the line is a comment, and all characters from # through the

next newline character (‘\n’) should be skipped. If it is neither a comment nor a whitespace character,

no more reading should take place, because the function is now reading useful information from the

header, such as the width, the height, or the maximum value. Thus the function loops as long as the

next character read is whitespace or part of a comment.

Determining if a character is a whitespace character is simple. ctype.h declares a function for deter-

mining if a character is whitespace called “isspace().” It returns a non-zero value if the passed-in char-

acter is whitespace. “isspace()” expects the argument passed in to be of typeint instead of a character.

An integer usually is four bytes and can hold values in the range [-2,147,483,648 – 2,147,483,647],

which more than covers the character range of [0,255]. Thus,characters in this function will be de-

clared of type “int” merely for compatibility with the “isspace()” function.

Determining whether a character is a “#” requires use of the comparison operator “==.” Unlike the

assignment operator (“=”), the comparison operator returns a true value if the two things being com-

pared are equal and false otherwise. A mistake programmers often make is to accidentally use “=” sign

instead of “==”. The compiler does not catch this error because the assignment, sayx=4, returns the

value assigned, in the case4, sowhile (x=4) is legal, if not terribly useful. The result is that instead

of comparing the two values, the first value is assigned to thesecond. To prevent this common bug, if

either value is constant, it should occur first. e.g.3 = x is not valid, because 3 cannot be assigned a

new value. Thus, the compiler will catch the mistake and print an error message to correct the line to3

== x.

To specify a single character in C, place it in single quotes.e.g. ‘#’, ‘a’, ‘1’, etc.) Thus, use the

104



www.manaraa.com

following notation to determine if a character is a pound sign: ch == ‘#’

The skip function must continue as long as either condition is true. That is, if the character is whitespace

or a pound sign, the loop must continue. To specify an “or” condition in C, use the double pipes: “||.”

The pipe is typically located above the backslash on the keyboard and appears to be a broken line. Two

of them are the C boolean operator “or” e.g. to determine if x is a 3 or a 5, use the following statement:

3==x || 5==x.

To begin the whitespace skipping function, first declare a variable of typeint to hold the character

currently being read, and read in the first character.

Next, create a while loop that continues as long as the character is either whitespace or a pound sign.

4. Create another loop inside the first loop to skip comments.A loop inside another loop is called a “nested

loop.” Each time the outer loop executes, the inner loop is executed and repeats until its condition fails.

In this case, the inner loop will specify that as long as thereare lines beginning with a pound sign, to

skip them.

If the character is a pound sign, the rest of the line must be skipped, using another nested while loop.

This third loop will read characters until the character is the newline character ‘\n’. Thus, the loop

continues as long as the character isnot the newline character. The operator for determining if two

items are not equal is the “!=” operator.

5. Create another loop inside the first loop of the function tocontinue reading characters as long as they

are whitespace characters.

This is the end of the outer loop as well, so it should be closedwith a brace.

6. After the loops have completed, put back the last character read. The loop completes only after a non-

comment, non-whitespace character has been read. This character is important data and should be put

back into the file stream to allow it to be properly read later.The C function for putting a character

back into the stream is “ungetc”, and it accepts two arguments: the character to put back (whatever is

stored in “ch”) and the file stream in which to put it in (“stdin”). After putting back the character, close

the function.

Thus, the entire function is shown in Algorithm .4.

7. Update the main to have a “return value” of type “int.” All functions in C may return a value. That

is, when the function is completed, it returns a value to the place from which is was called. Main

105



www.manaraa.com

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

void skip_comments_and_ws () {

int ch = fgetc (stdin);

while (’#’ == ch || isspace(ch)) {

/* remove command line, up to but not including the

newline character */

if (’#’ == ch) {

while (’\n’ != ch) {

ch = fgetc (stdin);

}

}

/* remove whitespace, including the newline, at the end

of a comment. */

while (isspace(ch)) {

ch = fgetc (stdin);

}

}

ungetc (ch, stdin);

}

Algorithm .4: Complete function for skipping over comments and white space

functions traditionally return an integer value specifying whether the function was successful. A zero

value indicates success and all other values indicate failure. To specify that the main function will

return an integer, place the keyword “int” before the main function: See Algorithm .5.

8. Declare variables to hold the width and height and the magic number. The magic number is two

characters: a ‘P’ and a ‘6’.

9. Read in the first two characters in the file and confirm that they are ‘P’ and ‘6’. If they are not, end

the function early by returning an error code. The “return statement” in a function immediately ends

a function and (if given a value) returns the specified value.For the error code, use the constant

defined instdlib.h: EXIT FAILURE. (A constant is similar to a variable except that its value cannot

be changed after its initial assignment. Constants are traditionally assigned names that are all capital

letters.) Of course, it is possible to simply return an integer value, but the constant improves readability

and guarantees a valid error code.

To check whether the characters are correct, use an “if” statement. An if statement is similar in structure

and behavior to a while loop. The difference is that an if statement is executed only once when the

106



www.manaraa.com

int main () {

int width, height;

unsigned char letter, number;

letter = fgetc (stdin);

number = fgetc (stdin);

if (’P’ != letter || ’6’ != number) {

printf ("Error: input file is not PPM format.\n");

return EXIT_FAILURE;

}

skip_comments_and_ws ();

scanf ("%d", &width);

skip_comments_and_ws ();

scanf ("%d", &height);

printf ("width: %d\n", width);

printf ("height: %d\n", height);

printf ("total pixels: %d\n", width*height);

return EXIT_SUCCESS;

}

Algorithm .5: Main function that returns an integer

condition is true. There are three parts to an if statement: the keywordif, the condition, and the

statement block to execute if the condition is true. The condition in this case is the first character is not

‘P’ OR the second character is not ‘6’. If the condition is true, an error message should be printed and

the function should return an error code.

10. Call the function for skipping comments and whitespace,since there may be any number of comments

and whitespace characters between the magic number and the width.

11. Read in the width as an integer. Until now, all data that has been read has been read as characters.

An integer is represented in an ASCII file as multiple characters, one for each digit. The multi-digit

integer should be read in and converted to one complete number stored in 4-byte, integer format. In

C, thescanf function will read in data in multiple formats, depending onthe format code provided.

The format codes used byscanf are basically the same as the codes forprintf. The format code for

reading an integer is “%d” (decimal). The arguments to the function are text specifying the data type to

read in and then the address of the variable to store the read data in. The data type of the variable must

match the format code specified, or the results could be incorrect. The address of the variable may be

obtained using the& operator. Similar to printf, scanf can read multiple items in each call, but only one

107



www.manaraa.com

integer needs to be read at this time.

12. Skip the comments and whitespace after the width and readthe height.

13. Print out the width and the height using printf. To make the output more readable, put some text before

the format code specifying what data is being displayed.

14. Print out the total number of pixels. The total number of pixels is the width multiplied by the height.

To multiple two numbers in C, use the* operator.

15. At the end of the main function, return the constant indicating that the program was a success.

A.6.8 Phase 5

Phase five is reading a PPM image file, printing it to standard out, and outputting the width, the

height, and the total number of pixels to standard error. Since this phase does not have a great deal of new

information, it is a good time to refactor the code to create abetter organization and a header file. Required

knowledge: outputting to standard error, addresses, pointers, header files.

1. Create a header file to hold all the preprocessor directives (include statements) and a forward declara-

tion for theskip comments and ws function. (The header file should be named after the name of the

C file with the extension.h.) Forward declarations are similar to the first line of a function, except that

the parameters do not need to be named and, instead of a block of statements, ends with a semicolon.

Forward declarations provide information to the compiler about the function before the actual code is

compiled, meaning that the function may exist in a different file or after that point at which it is called.

If a function has no parameters, it is best to specify that theparameters are “void” in order to prevent the

compiler from assuming that the forward declaration merelychose to not specify parameters. Forward

declarations may be delayed to give students practice defining functions before use.

2. Add an include statement at the top of the C file to include the header file.

3. Create a “readheader” function to read the entire header, and return the width, the height, and whether

the function was successful. Since functions can return only one value, addresses (via pointers) must

be used instead to return additional information. It has already been demonstrated that scanf uses

the address of a variable to store information. Similarly, the read header function may accept the

108



www.manaraa.com

#include "print_img.h"

int read_header (int *width, int *height) {

int maxVal;

unsigned char c, letter;

c = fgetc (stdin);

letter = fgetc (stdin);

if (c != ‘P’ || letter != ‘6’) {

printf ("Incorrect Magic Number\n");

return 0;

}

skip_comments_spaces ();

scanf ("%d", width);

skip_comments_spaces ();

scanf ("%d", height);

skip_comments_spaces ();

scanf ("%d%c", &maxVal, &c);

return 1;

}

Algorithm .6: The complete function for reading the ASCII header

addresses of width and height variables and store the valuesread into those, e.g., a call toread header

would be the following:read header (&width, &height);

To accept addresses as parameters, theread header function must specify the data types of the vari-

ables to be integer pointers. A pointer is an address in memory that holds a particular type of data.

For example, an integer pointer is the address of an integer in memory. The four bytes of data at that

address will be interpreted as an integer. To declare a variable to be a pointer, after the data type, use

an asterisk (*) before each variable that will be a pointer, e.g.,int *i, *j;.

The integer returned will specify whether the read was successful. The function will put the width

and height in the address locations specified so that the mainfunction will have access to them. The

width and height will be read in by scanf, which uses addresses. Since width and height are already

addresses, there is no need for & before them.

The function will call the skipping function as needed to skip comments and whitespace, and it will

read all the information from the image except the image data. If the file does not begin with the magic

number,read header will return a false value to indicate that reading failed. The maximum value

will be assumed to be 255 and does not need to be returned. Onlyone character should occur after the

maximum value, and it will be “eaten” as well. See Algorithm .6.

109



www.manaraa.com

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

void skip_comments_and_ws (void);

int read_header (int *, int *);

Algorithm .7: Header file

int main () {

int width, height;

if (!read_header (&width, &height)) {

fprintf (stderr, "Error: input file is not PPM format.\n");

return EXIT_FAILURE;

}

printf ("P6\n%d %d\n255\n", width, height);

for (i=0; i < width*height*3; ++i) {

c = fgetc (stdin);

printf ("%c", c);

}

fprintf (stderr, "width: %d\n", width);

fprintf (stderr, "height: %d\n", height);

fprintf (stderr, "total pixels: %d\n", width*height);

return EXIT_SUCCESS;

}

Algorithm .8: Invocation of the header-reading function and error testing

4. Add a forward declaration forread header function in “print img.h.” See Algorithm .7.

5. Update the main function to call readheader, passing it the address of locally-created width andheight

variables. If the header read is unsuccessful, an error message should be printed and the function should

be returned.

Error messages should not be sent to standard out because 1) they will end up in the same file to

which standard out is directed and 2) there is a special output stream, usually used for error messages,

called “standard error.” Data printed to standard error will not be included with standard out (but it can

be redirected as well). To output to standard out, use thefprintf function. Thefprintf function

accepts the file streamsstderr andstdout, as well as user-created streams. It is followed by the

usual arguments used forprintf. See Algorithm .8.

6. Update the main to read thewidth× height× 3 bytes of image and output them to standard out, then

110



www.manaraa.com

print the width, height, and total pixels to standard error.Add text with the output of the width, height,

and total pixels to identify each element.

7. Compile and run the program, redirecting the input and output appropriately. The image should be

copied to the new location and the width, height, and total number of pixels should be displayed on the

screen.

A.6.9 Phase 6

Phase six is reading a PPM image file and modifying to the colors. This phase leads to the final

goal of modifying an image’s color scheme to match another image. The phase provides practice modifying

image data and may take many forms, including changing one channel’s value to a fixed value, lightening

or darkening all values, converting the image to grayscale,inserting scan lines, fading the colors, converting

to monochrome, etc. This is a phase where students can be creative. Required knowledge: information

regarding the selected file modification. Channel modification: none; Grayscale: floating point; Scan lines:

nested “for” loops, modular arithmetic; conversion to monochrome: chrominance and luminance formulas,

capping values, etc.

Update the main to make the appropriate modification to the pixels read, using the previous phase

as the starting point for each version.

• Changing a channel to a fixed value.

1. Choose a channel to modify and a way to modify it. For this example, the blue channel will be

changed to zero.

2. Update the main function to read the three bytes representing the pixel and modify the appropriate

channel appropriately. See Algorithm .9.

The resulting image should clearly be lacking the blue channel.

• Increasing/decreasing all channels by a fixed value is similar to changing an individual channel. Be

sure to check for overflow (values over 255) and underflow (values below 0).

• Conversion to grayscale

1. Change the output image’s magic number to be “P5.” P5 is thespecification for grayscale PPM

files. Instead of three bytes of data for each pixel, each pixel is represented by one byte of data,

111



www.manaraa.com

int main () {

int width, height, i;

unsigned char red, green, blue;

if (!read_header (&width, &height)) {

fprintf (stderr, "Error: input file is not PPM format.\n");

return EXIT_FAILURE;

}

printf ("P6\n%d %d\n255\n", width, height);

for (i=0; i < width * height; ++i) {

red = fgetc (stdin);

green = fgetc (stdin);

blue = fgetc (stdin);

printf ("%c%c%c", red, green, 0);

}

return EXIT_SUCCESS;

}

Algorithm .9: Modification of the image to exclude blue

which usually contains the “luminance” value of the pixel. Luminance describes the amount of

brightness of the pixel: 0 is black and 255 is white. See Algorithm .10.

2. Update the function to read in three bytes (representing one pixel) at a time, convert them to lumi-

nance, and output the result. In general, conversion of an RGB color specification to luminance

requires knowledge of the intended display device, but a reasonable choice is to assume the NTSC

standard display, for which the weighting should be 30% red,59% green, and 11% blue. Numbers

with decimal points are called “floating point values.” Floating point values are more difficult to

represent than integers, because of precision issues. Therefore, floating point variables are used

only when necessary. “.3”, “.59”, and “.11” will be handled as “doubles” in C. “Doubles” are

double-precision, floating-point numbers and require twice as many bytes as the smaller floating

point representation, “float.” Multiplying the unsigned characters holding the bytes of image data

by doubles will produce an answer in double format. Since thedata will be printed in unsigned

character format, the result will be converted back to anunsigned char by the assignment to

“lum.” All the information after the decimal point will be truncated. e.g.unsigned char c =

1.9999; results in 1. Addition of 0.5 followed by truncation is equivalent to rounding, and that

is used in the displayed code.

The output should be a grayscaled image.

• Darkened scan lines (like a TV with a fuzzy signal)

112



www.manaraa.com

#include "grayscale.h"

int main () {

int width, height, i;

unsigned char red, green, blue;

unsigned char lum;

if (!read_header (&width, &height)) {

fprintf (stderr, "Error: input file is not PPM format.\n");

return EXIT_FAILURE;

}

printf ("P5\n%d %d\n255\n", width, height);

for (i=0; i < width * height; ++i) {

red = fgetc (stdin);

green = fgetc (stdin);

blue = fgetc (stdin);

lum = red * .3 + green * .59 + blue * .11 + .5;

printf ("%c", lum);

}

return EXIT_SUCCESS;

}

Algorithm .10: Image grayscaling

1. In the main function, create variables specifying how much of a gap to have between each dark-

ened line and how wide each darkened line should be. (These should probably be constants.) The

line width is the number of pixels wide each darkened line will be, and the gap is the number

of pixels between the start of successive darkened lines. Additionally, create three loop counter

variables. See Algorithm .11.

2. Update the loop for reading the image data to be three nested for loops: the first loop goes through

each row, the second through each pixel, and the third through each channel of each pixel. This

step provides a loop counter variable for determining whichrow is currently being read.

3. The method of determining if a row should have a scan line isto 1) find the remainder after

dividing of i by the gap and 2) determine if it is a value less than the line gap. For example,

if the gap is 4, for rows 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, the remainders after division are 0,

1, 2, 3, 0, 1, 2, 3, 0, 1, 2 respectively. Then, if these values are compared to a line width of 2,

remainder values of 0 and 1 will be given darkened scan lines.That is, lines 0, 1, 4, 5, 8, and 9.

To calculate the remainder, use the modulo operator %.A%B the remainder after dividing integer

A by B. After multiplication by a double, the result must be cast back to an unsigned character.

(See grayscaling.)

113



www.manaraa.com

int main () {

int width, height, i, j, k;

int gap = 8, line_width = 2;

unsigned char channel;

if (!read_header (&width, &height)) {

fprintf (stderr, "Error: input file is not PPM format.\n");

return EXIT_FAILURE;

}

printf ("P6\n%d %d\n255\n", width, height);

for (i=0; i < height; ++i) {

for (j=0; j < width; ++j) {

for (k=0; k < 3; ++k) {

channel = fgetc (stdin);

if (i%gap < line_width) {

channel = (unsigned char)(channel * .9);

}

printf ("%c", channel);

}

}

}

return EXIT_SUCCESS;

}

Algorithm .11: Adding scan lines

• Color fade. The concept behind fading is reducing the amountof color in the image toward grayscale.

The image is not darkened, merely faded. The method of fadingis to add a weighted grayscale amount

to the image. For example, if the image will be faded 50%, 50% of each color channel will be the color

value and 50% will be the grayscale value.

1. Create the necessary variables to hold the channel values, the grayscale value, and the amount to

fade. The example is 50%.

2. Read in the pixels, one at a time, and compute the luminancefor each pixel. (See previous

description of luminance computation.)

3. Combine the current value of each channel with the luminance value. Use the specifiedamt to

weight the channel value and 1− amt for the luminance.

4. Output the resulting channel values. The output result should have faded colors. See Algorithm

.12.

• Monochrome conversion: converting the image into one with afixed chrominance and varying lumi-

nance. Basically, instead of gray, the base color may be any color. The color value separate from its

114



www.manaraa.com

int main () {

int width, height, i;

unsigned char red, green, blue, lum;

float amt = .5;

if (!read_header (&width, &height)) {

fprintf (stderr, "Error: input file is not PPM format.\n");

return EXIT_FAILURE;

}

printf ("P6\n%d %d\n255\n", width, height);

for (i=0; i < width * height; i++) {

red = fgetc (stdin);

green = fgetc (stdin);

blue = fgetc (stdin);

/* compute the grayscale value */

lum = red * .3 + green * .59 + blue * .11 + .5;

red = red * amt + lum * (1.0-amt);

green = green * amt + lum * (1.0-amt);

blue = blue * amt + lum * (1.0-amt);

printf ("%c%c%c", red, green, blue);

}

return EXIT_SUCCESS;

}

Algorithm .12: Fade program

115



www.manaraa.com

brightness is called chrominance. The output image will be in the 255 possible shades of that color. In

order to apply the color in this way, it must be converted to a format that separates chrominance from

brightness.

Television signals are transmitted in chrominance and luminance (technically gamma corrected lumi-

nance. luminance (“Y”) represents the brightness of the image (between black and white) and is the

only part used by black and white televisions. Chrominance is represented by two values, sometimes

called “Cb” and ”Cr.” Cb isblue− Y, and Cr isred− Y. To compute Cb and Cr from RGB values, use

the following formulas:

Cb= −.147× red− .289× green+ .436× blue (1)

Cr = .615× red− .515× green− .1× blue (2)

Once the chrominance of a color is determined, the RGB value of the color with the same chrominance

but different luminance(Y) may be obtained using the following formulas:

red= Y+ 1.14×Cr (3)

green= Y− .395×Cb− .581×Cr (4)

blue= Y+ 2.032×Cb (5)

1. Choose a color value to extract Chrominance from. The example is Clemson orange (255, 99, 0).

See Algorithm .13.

2. Create variables for holding the width, height, loop counter, the current pixel’s RGB values, the

current pixel’s luminance, temporary integer RGB values with which to perform mathematics,

and floating point variables for holdingCr andCb.

3. Calculate the chrominance of the chosen color.

4. Read in the RGB values of one pixel at a time and compute the luminance.

116



www.manaraa.com

int main () {

unsigned char mono_r = 255;

unsigned char mono_g = 99;

unsigned char mono_b = 0;

int width, height, i;

int r, g, b;

float cb, cr;

cb = -.147 * mono_r - .289 * mono_g + .436 * mono_b;

cr = .615 * mono_r - .515 * mono_g - .1 * mono_b;

if (!read_header (&width, &height)) {

fprintf (stderr, "Error: input file is not PPM format.\n");

return EXIT_FAILURE;

}

printf ("P6\n%d %d\n255\n", width, height);

for (i=0; i < width*height; i++) {

r = fgetc (stdin);

g = fgetc (stdin);

b = fgetc (stdin);

lum = .3 * r + .59 * g + .11 * b;

r = lum + 1.14 * cr + .5;

g = lum - .395 * cb - .581 * cr + .5;

b = lum + 2.032 * cb + .5;

if (r > 255) r= 255;

if (r < 0) r= 0;

if (g > 255) g= 255;

if (g < 0) g= 0;

if (b > 255) b= 255;

if (b < 0) b= 0;

printf ("%c%c%c", r, g, b);

}

return EXIT_SUCCESS;

}

Algorithm .13: Monochrome program

117



www.manaraa.com

unsigned char in[1280*960*3];

Algorithm .14: Declaration of an array of unsigned characters to hold imagedata

5. Calculate new RGB values for the pixel based on the specified chrominance and the newly calcu-

lated luminance.

6. Cap the values of the newly-calculated RGB values to be in the range [0,255]. It is possible that

the calculated values have exceeded the range of a byte. (Note that these if statements could be

improved as if-else statements. It is up to the instructor asto whether to introduce the concept.)

7. Assign the new values to the unsigned characters and output them using printf.

The resulting image should be in shades of Clemson Orange.

A.6.10 Phase 7

Phase seven is reading a PPM image file into an array and makinga modification. The storage of

the entire image at one time is necessary for the final goal of reading in two images entirely and manipulating

one based on the other. Modifications to the image may now depend on knowledge of more than one pixel

at a time. Such modifications include resizing, tiling, flip,half-toning, rotation, blur, sharpen, etc. This is

another opportunity for creativity. Required knowledge: arrays, fread, fwrite.

1. Determine the size of the image to manipulate. The size maybe found using a viewer or by using the

Unix “head” command to look at the first few lines of the input PPM. e.g.head -3 in.ppm. The size

of the example image is 1280 by 960.

2. Create an array of unsigned characters in the main to hold all the image data. An “array” is a contiguous

block of memory with a single name that can hold multiple values of the same data type. An array is

declared with a data type and a length, or number of elements of that data type. The notation for

declaring an array is “datatype arrayname [number of elements];” e.g. int array [10]; The block

of memory allocated by such an array declaration is the size of the data type (e.g. four bytes for int, one

byte for char, eight bytes for double) times the number of elements. In the array for the example image

must hold 1280×960×3 bytes. The multiplication by 3 is necessary because each pixel is represented

by 3 bytes. See Algorithm .14.

3. Read data into the array using the “fread” function. The “fread” function reads in the specified number

118



www.manaraa.com

fread (in, 1, 1280*960*3, stdin);

Algorithm .15: Reading of the entire block of image data

of elements of the specified size from a specified file stream into an array. The benefit of “fread” is that

all image data may be read in one command instead of hundreds or thousands. Individually reading

bytes of data is much slower than reading the entire block at once. The notation for fread is “fread

(location at which to store data, number of bytes for each element, number of elements, input file

stream);” Note that the name of the array is equivalent to theaddress of its first storage location. So,

&in[0] could have been used instead ofin. See Algorithm .15.

4. Apply the appropriate modification. Examples are rotate 90 degrees and sharpen.

• Rotate 90 degrees. The image will be rotated in the clockwisedirection 90 degrees. The height

will now become the width, and vice versa.

(a) Create the main with multiple loop counter variables, the width and height, the new width

and height (after rotation), an array to hold the input imagedata, and an array to hold the

modified output data. See Algorithm .16.

(b) After reading in the data, swap the width and the height for the output image.

(c) Create three nested for loops: one for the rows in the new image, one for the columns, and

one for the 3 bytes in each pixel.

(d) Place in the current location the appropriate byte of data. There are two key parts to handle:

1) getting the current location in the output array and 2) getting the appropriate byte. First,

the red byte of the first pixel in the upper left-hand corner isat array element zero. In C, array

elements begin with element 0. (This counting scheme is based on the fact that elements are

located by adding the element number to the address of the array, and the first element is at

the beginning and needs nothing added.) To access element 0,use the notationin[0]. The

green byte is at array element 1, i.e.in[1], and the blue atin[2]. The red byte of the

second pixel on the first row is atin[3]. The red byte of the first pixel on the second row

is atin[width*3]. The reason for the multiplication is that the second row occurs after all

the first row data is complete, and there are “width” number ofpixels with 3 bytes of data.

The first red byte on theith row is atin[i*width*3]. Finally, the blue byte on thejth pixel

119



www.manaraa.com

int main () {

int width, height, new_w, new_h, i, j, k;

unsigned char in[1280*960*3];

unsigned char out[960*1280*3];

if (!read_header (&width, &height)) {

fprintf (stderr, "Error: input file is not PPM format.\n");

return EXIT_FAILURE;

}

if (width != 1280 || height != 960) {

fprintf (stderr, "Error: file is not the correct size.\n");

return EXIT_FAILURE;

}

fread (in, 1, width*height*3, stdin);

new_w = height;

new_h = width;

printf ("P6\n%d %d\n255\n", new_w, new_h);

for (i=0; i < new_h; i++) {

for (j=0; j < new_w; j++) {

for (k=0; k < 3; k++) {

out[(i*new_w+j)*3+k]=in[((height-j-1)*width+i)*3+k];

}

}

}

// fwrite included in later code sample

Algorithm .16: Rotate 90 degrees

120



www.manaraa.com

on theith row is atin[(i*width+j)*3+2]: each pixel is 3 bytes away from the next (thus

the multiplication by 3) and the blue channel is the 3rd byte of the pixel, thus the addition

of 2. In the example, the current location in the output data is specified as rowi, column j,

channelk which is atout[(i*new w+j)*3 + k].

With the location to copy the data to in hand, where should thedata be drawn from in order

to result in the rotation of the image? Consider an image witha width of 3 and height of 4.

The pixel layout is as follows:

0r0g0b 1r1g1b 2r2g2b

3r3g3b 4r4g4b 5r5g5b

6r6g6b 7r7g7b 8r8g8b

9r9g9b 10r10g10b 11r11g11b

If the image is rotated by 90 degrees, the layout of the numbered pixels will be as follows:

9r9g9b 6r6g6b 3r3g3b 0r0g0b

10r10g10b 7r7g7b 4r4g4b 1r1g1b

11r11g11b 8r8g8b 5r5g5b 2r2g2b

Thus, the pixel in rowheight− 1 − j, columni, channelk maps to the new image’s rowi,

column j, channelk.

• Sharpen image. Sharpening is done by the application of a convolution filter, which is simply

a re-weighting of each pixel to distinguish it from surrounding pixels. To compute the final

value of a sharpened pixel, floating point values in a fixed 3 by3 filter grid are multiplied by the

corresponding pixel values with the target pixel in the middle. The products are then summed

to reach the final pixel value. The filter must be applied to all3 channels of each pixel. See

Algorithm .17.

5. After modification, output the modified image data to standard out using the “fwrite” function. The

“fwrite” function outputs the specified number of elements of the specified size from the specified

array to the specified file stream. Similar to fread, using fwrite to output the data in one block is more

efficient than writing it byte at a time. The notation for fread is“fread (output data, number of bytes

for each element, number of elements, output file stream);” See Algorithm .18.

121



www.manaraa.com

float filter [3][3] = { { 0/3.0, -2/3.0, 0/3.0},

{ -2/3.0, 11/3.0, -2/3.0},

{ 0/3.0, -2/3.0, 0/3.0} };

/* After the image data is read into image */

for (i=0; i < height; ++i) {

for (j=0; j < width; ++j) {

for (k=0; k < 3; ++k) {

/* multiply each surrounding pixel by the

corresponding filter value and sum up the result

to find the sharpened value */

result = 0.0;

for (m=0; m < 3; ++m){

for (n=0; n < 3; ++n){

/* the row should be offset by m. If the row

would then be out of bounds, the modding and

addition of height will wrap it around */

row = (i + m - 1 + height)%height;

/* modding by width with column will similarly protect

from out of bounds. */

col = (j + n - 1 + width)%width;

result+=filter[m][n] *

image[(row*width+col)*3+k];

}

}

/* cap the value */

if (result > 255) result = 255;

if (result < 0) result = 0;

newImage[(i*width+j)*3+k] = (unsigned char) result;

}

}

}

Algorithm .17: Applying the sharpen filter

fwrite (out, 1, width*height*3, stdout);

Algorithm .18: Output of the entire block of image data

122



www.manaraa.com

int main () {

unsigned char *image, *newImage;

int width, height;

if (!read_header (&width, &height)) {

fprintf (stderr, "Error: input file is not PPM format.\n");

return EXIT_FAILURE;

}

image = (unsigned char *) malloc (width * height * 3);

newImage = (unsigned char *) malloc (width * height * 3);

fread (image, height * width * 3, 1, stdin);

/* modify data and place in newImage array */

fwrite (newImage, width*height, 3, stdout);

free (newImage);

free (image);

return EXIT_SUCCESS;

}

Algorithm .19: Dynamic memory allocation

A.6.11 Phase 8

Phase eight is reading a PPM image file of any size using dynamic memory allocation. The size of

the image is unknown at runtime and is read from the header of the image file. The memory needed is then

allocated dynamically. Required knowledge: dynamic memory allocation.

1. Declare two unsigned character pointers for the input andoutput image data. These pointers will later

point to the dynamically allocated blocks of memory to hold image data.

2. Get the width and height of the image header.

3. Dynamically allocatewidth× height× 3 bytes for input and output data.

4. Read in the data and place the modified data in the output array.

5. Output the array and free the allocated memory. See Algorithm .19.

A.6.12 Phase 9

Phase nine is reading a PPM image file, converting it to CIELABcolorspace, modifying the colors,

and printing it back out. The modification can be anything from modifying one component to produce an

interesting effect or a color balancing algorithm. The matrix multiplication for this phase may be covered in

123



www.manaraa.com

void multiply3by3 (float m1[3][3], float m2[3][3], float result[3][3]) {

int i, j, k;

for (i=0; i < 3; ++i) {

for (j=0; j < 3; ++j) {

result[i][j] = 0;

for (k=0; k < 3; ++k) {

result[i][j] += m1[i][k] * m2[k][j];

}

}

}

}

Algorithm .20: 3 by 3 multiplication

the laboratory setting or provided to the students. Required knowledge: matrix multiplication, knowledge of

RGB to CIELAB format.

1. Create a function to multiply two 3 by 3 matrices together.This function will be used to compute the

conversion matrices. See Algorithm .20.

2. Create functions to multiply an array of unsigned characters by a conversion matrix of floats producing

floats, to multiply an array of floats by a conversion matrix producing an array of unsigned characters,

and to multiply an array of floats by a conversion matrix producing an array of floats. These function

will be used to convert to and from RGB, LMS and CIELAB formats. (LMS is a color space represented

by the response of the three types of cones of the human eye, named after their sensitivity at long,

medium and short wavelengths. Because RGB is relative colorspace (e.g., 255 is full intensity for a

channel, but full intensity is not defined), RGB is convertedto LMS before conversion to the CIELAB

format which is a more visually uniform format.) The parameters are 2D arrays, but they can be left

as flat arrays. To use flat (1D) arrays as 2D arrays, cast the pointer to be a 2D array. The number of

elements in each row much be constant. See Algorithms .21 and.22.

3. Create functions to convert to and from RGB and LMS. See Algorithm .23.

4. Create functions to convert to and from LMS and CIELAB. SeeAlgorithm .24.

5. Create RGB/CIELAB conversion functions that invoke existing conversion functions. See Algorithm

.25.

6. Create utility functions to read and output PPM images.

124



www.manaraa.com

void matrix_mult_char2float (float matrix[3][3],

unsigned char (*in)[3], float (*out)[3], int num_pixels){

int i, j, k;

float result;

for (i=0; i < num_pixels; ++i) {

for (j=0; j < 3; ++j) {

result = 0;

for (k=0; k < 3; ++k)

result += in[i][k] * matrix[k][j];

out[i][j] = result;

}

}

}

void matrix_mult_float2char (float matrix[3][3], float (*in)[3],

unsigned char (*out)[3], int num_pixels){

int i, j, k;

float result;

for (i=0; i < num_pixels; ++i) {

for (j=0; j < 3; ++j) {

result = .5; /* add .5 for rounding */

for (k=0; k < 3; ++k)

result += in[i][k] * matrix[k][j];

if (result > 255) result = 255;

if (result < 0) result = 0;

out[i][j] = result;

}

}

}

Algorithm .21: Character and float conversion

125



www.manaraa.com

void matrix_mult_float2float (float matrix[3][3],

float (*array)[3], int num_pixels){

int i, j, k;

float result;

float *out = (float *) malloc (num_pixels*3* sizeof(float));

for (i=0; i < num_pixels; ++i) {

for (j=0; j < 3; ++j) {

result = 0;

for (k=0; k < 3; ++k)

result += array[i][k] * matrix[k][j];

out[i*3+j] = result;

}

}

for (i=0; i < num_pixels; ++i) {

for (j=0; j < 3; ++j) {

array[i][j] = out [i*3+j];

}

}

free (out);

}

Algorithm .22: Character and float conversion, continued.

void rgb_to_lms(unsigned char *rgbArray, float *labArray, int num_pixels

){

float matrix [3][3];

float m1 [3][3] = { {0.3897, 0.6890, -.0787},

{-.2298, 1.1834, 0.0464},

{0.0000, 0.0000, 1.0000} };

float m2 [3][3] = { {.5141, .3239, .1604},

{.2651, .6702, .0641},

{.0241, .1228, .8444} };

multiply3by3 (m1, m2, matrix);

matrix_mult_char2float (matrix, (unsigned char (*)[3])rgbArray,

(float (*)[3])labArray, num_pixels);

}

void lms2rgb (float *lab, unsigned char *rgb, int num_pixels) {

float matrix [3][3] = { {4.4679, -3.5873, 0.1193},

{-1.2186, 2.3809, -0.1624},

{0.0497, -0.2439, 1.2045} };

matrix_mult_float2char (matrix, (float (*)[3])lab,

(unsigned char (*)[3])rgb, num_pixels);

}

Algorithm .23: RGB to LMS and LMS to RGB

126



www.manaraa.com

void lms2lab (float *labArray, int num_pixels) {

float matrix [3][3];

float m1 [3][3] = { {sqrt(3)/3, 0, 0},

{0, sqrt(6)/6, 0},

{0, 0, sqrt(2)/2} };

float m2 [3][3] = { {1, 1, 1},

{1, 1, -2},

{1, -1, 0} };

multiply3by3 (m1, m2, matrix);

matrix_mult_float2float (matrix, (float (*)[3])labArray, num_pixels);

}

void lab_to_lms (float *labArray, int num_pixels) {

float matrix [3][3];

float m1 [3][3] = { {1, 1, 1},

{1, 1, -1},

{1, -2, 0} };

float m2 [3][3] = { {sqrt(3)/3, 0, 0},

{0, sqrt(6)/6, 0},

{0, 0, sqrt(2)/2} };

multiply3by3 (m1, m2, matrix);

matrix_mult_float2float (matrix, (float (*)[3])labArray, num_pixels);

}

Algorithm .24: LMS to CIELAB and CIELAB to LMS

void rgb_to_lab(unsigned char *rgbArray, float *labArray, int num_pixels

){

rgb_to_lms (rgbArray, labArray, num_pixels);

lms2lab (labArray, num_pixels);

}

void lab2rgb(unsigned char *rgbArray, float *labArray, int num_pixels){

lab_to_lms (labArray, num_pixels);

lms2rgb (labArray, rgbArray, num_pixels);

}

Algorithm .25: RGB to CIELAB and CIELAB to RGB

127



www.manaraa.com

int getImage (unsigned char **data, int *width, int *height) {

unsigned char c;

int maxVal;

c = fgetc (stdin);

/* toupper converts the character to uppercase */

if (toupper(c) != ’P’ || (c=fgetc(stdin)) != ’6’) {

fprintf (stderr, "Incorrect Magic Number\n");

return 0;

}

skip_comments_spaces ();

fscanf (stdin, "%d", width);

skip_comments_spaces ();

fscanf (stdin, "%d", height);

skip_comments_spaces ();

fscanf (stdin, "%d", &maxVal);

fgetc (stdin);

*data = (unsigned char *) malloc ((*width) * (*height) * 3);

fread (*data, (*width) * (*height) * 3, 1, stdin);

return 1;

}

void skip_comments_spaces () {

unsigned char c;

c = fgetc (stdin);

while (c == ’#’ || isspace(c)) {

if (c == ’#’) {

while (c != ’\n’) {

c = fgetc (stdin);

}

}

while (isspace(c)) {

c = fgetc (stdin);

}

}

ungetc (c, stdin);

}

void outputPPM (unsigned char *data, int width, int height) {

fprintf (stdout, "P6\n%d %d\n255\n", width, height);

fwrite (data, width * height * 3, 1, stdout);

}

Algorithm .26: Image reading utilities

128



www.manaraa.com

int main () {

int width, height, i;

unsigned char *image;

float * lab;

if (!getImage (&image, &width, &height)) {

fprintf (stderr, "Error reading \n");

return EXIT_FAILURE;

}

lab = (float *) malloc(width*height*3*sizeof(float));

rgb_to_lab (image, lab, width * height);

for (i=0; i < width*height; ++i) {

lab[i*3+1] += 20;

}

lab2rgb (image, lab, width*height);

outputPPM (image, width, height);

return EXIT_SUCCESS;

}

Algorithm .27: CIELAB conversion main function

7. Create main method to perform conversion, modify the colors and output. See Algorithm .27.

A.6.13 Phase 10

Phase ten is reading a PPM image file specified on the command-line, converting it to CIELAB

format to modify the colors, and printing it back out. Use of command-line arguments is necessary for the

final phase, where two images must be specified as input. Required knowledge: Command-line arguments,

strings.

1. Update the main function to accept parameters to hold the command-line arguments. The main func-

tion, like all functions may specify parameters in the parentheses after its name. The parameters should

be specified by a data type and a name assigned to it. When the function is called, the appropriate type

and number of arguments must be supplied. “Arguments” are the actual values used when calling the

function. “Parameters” are the names for the values used inside the function.

The first command-line argument (implicitly) passed to the main function is a count of the number

of arguments in the command line. The second argument is an array of the strings provided on the

command line, beginning with the name of the program, in the following format:./aout arg1 arg2

arg3 and so on. These arguments are handled as text or what is called in programming terminology

“strings.” A “C string” is a sequence of characters with a value of zero (called “NULL”) marking the

129



www.manaraa.com

int main (int argc, char *argv[]) {

int width, height, i;

unsigned char *image;

float * lab;

FILE *in;

if (argc < 2) {

fprintf (stderr, "Usage: %s filename\n", argv[0]);

return EXIT_FAILURE;

}

in = fopen (argv[1], "r");

if (!getImage (in, &image, &width, &height)) {

fprintf (stderr, "Error reading \n");

return EXIT_FAILURE;

}

lab = (float *) malloc(width * height * 3 * sizeof(float));

rgb_to_lab (image, lab, width * height);

for (i=0; i < width*height; ++i) {

lab[i*3+1] += 20;

}

lab2rgb (image, lab, width*height);

outputPPM (image, width, height);

return EXIT_SUCCESS;

}

Algorithm .28: Reading file name from command line

end of the string. The first string passed in is the name of the executable program. Inside the program,

this can be found atargv[0] which holds the location of the first character in this stringname. The

first user-supplied command-line argument is at array location one,argv[0]. See Algorithm .28.

2. Update the error message to use the command-line arguments.

3. Open the file passed in on the command line using the “fopen”command. The file should be opened

in read mode using the “r” identifier.

4. Pass the file handle (stream identifier) to the image reading functions. See Algorithm .29.

A.6.14 Phase 11

Phase eleven is reading in two PPM image files, converting them to CIELAB format, computing the

means and standard deviations on each file, adjusting the values of the first image to the values of the second

based on the paper [60], and printing out the resulting image. Required knowledge: computation of mean,

standard deviation, math functions, and structures.

130



www.manaraa.com

int getImage (FILE *in, unsigned char **data, int *width, int *height) {

unsigned char c;

int maxVal;

/* read P6 */

c = fgetc (in);

if (toupper(c) != ’P’ || (c=fgetc(in)) != ’6’) {

fprintf (stderr, "Incorrect Magic Number\n");

return 0;

}

skip_comments_spaces (in);

fscanf (in, "%d", width);

skip_comments_spaces (in);

fscanf (in, "%d", height);

skip_comments_spaces (in);

fscanf (in, "%d", &maxVal);

fgetc (in);

*data = (unsigned char *) malloc ((*width) * (*height) * 3);

fread (*data, (*width) * (*height) * 3, 1, in);

return 1;

}

void skip_comments_spaces (FILE *in) {

unsigned char c;

c = fgetc (in);

while (c == ’#’ || isspace(c)) {

if (c == ’#’) {

while (c != ’\n’) {

c = fgetc (in);

}

}

while (isspace(c)) {

c = fgetc (in);

}

}

ungetc (c, in);

}

Algorithm .29: File reading with file handle

131



www.manaraa.com

void logarray (float *fltarray, int num_pixels) {

int i;

for (i=0; i < num_pixels * 3; ++i) {

fltarray[i] = log10 (fltarray[i]);

if (!finite(fltarray[i])) fltarray[i] = 0;

}

}

void exparray (float *fltarray, int num_pixels) {

int i;

for (i=0; i < num_pixels *3; ++i) {

fltarray[i] = pow (10, fltarray[i]);

}

}

Algorithm .30: Log (base 10) and Power of Ten functions

void rgb_to_lab (unsigned char *rgbArray, float *fltarray, int

num_pixels) {

rgb_to_lms (rgbArray, fltarray, num_pixels);

logarray (fltarray, num_pixels);

lms2lab (fltarray, num_pixels);

}

void lab2rgb (unsigned char *rgbArray, float *fltarray, int num_pixels)

{

lab_to_lms (fltarray, num_pixels);

exparray (fltarray, num_pixels);

lms2rgb (fltarray, rgbArray, num_pixels);

}

Algorithm .31: Conversion with minimized skewing

1. Create functions to compute and store the logarithms and exponentials of arrays of floats. The data

values are scaled logarithmically to minimize skewing, andafter modification they must be converted

back. See Algorithm .30.

2. Invoke the logarithm and power functions appropriately.See Algorithm .31.

3. Create a structure to hold all the information about a file,including its name; its RGB, LMS, and

CIELAB values; its width and height; and its CIELAB means andstandard deviations. A structure

is an aggregate, user-defined type that may hold multiple variables of multiple types. Since it is a

(user-defined) type, any number of variables of that structure type may be created. See Algorithm .32.

4. Create functions to compute the means and standard deviations of CIELAB L, A, and B values. Mean

132



www.manaraa.com

struct fileinfo {

char *name;

unsigned char *rgb;

float *lms;

float *lab;

int width, height;

float mean[3], std[3];

};

Algorithm .32: File information structure

is a simple average. Standard deviation is defined by the following formula:

σ =

√

√

√

1
N

N
∑

i=1

(xi − x)2 (6)

The standard deviation may be computed with the following steps: 1) Subtract the mean from each

value. 2) Square the value. 3) Compute the sum of the squares.4) Divide each square sum by the

number of values. 5) Take the square root the value. See Algorithm .33.

5. Create a function to scale the L, A, and B values of the imagedata from one file to have the same means

and standard deviations as the other. Scaling is done with the following formula:

x′ = (x− xtarget)
σx

re ference

σx
target

+ xre ference (7)

The steps are as follows: 1) subtract the average value in thetarget image from each pixel’s value. 2)

multiply each value by the standard deviation for the reference image over the standard deviation for

the target image. 3) add the average value from the referenceimage to each value. See Algorithm .34.

6. Update the main function to read in two files using the nameson the command line, convert them to

CIELAB, compute the means and standard deviations, scale the target image, and output the result.

See Algorithm .35.

133



www.manaraa.com

void lab_mean (struct fileinfo *image) {

int i, j, k;

for (k=0; k < 3; ++k) {

image->mean[k] = 0;

}

for (i=0; i < image->height; ++i) {

for (j=0; j < image->width; ++j) {

for (k=0; k < 3; ++k) {

image->mean[k]+= image->lab[i*image->width*3+j*3+k];

}

}

}

for (k=0; k < 3; ++k) {

image->mean[k] /= image->width * image->height;

}

}

void lab_stddev (struct fileinfo *image) {

int i, j;

float sq_sum[3] = {0,0,0};

for (i=0; i < image->height * image->width; i++) {

for (j=0; j < 3; j++) {

sq_sum[j] += (image->lab[i*3+j]-image->mean[j]) *

(image->lab[i*3+j]-image->mean[j]);

}

}

for (j=0; j < 3; j++) {

sq_sum[j] /= image->height * image->width;

image->std[j] = sqrt (sq_sum[j]);

}

}

Algorithm .33: Mean and standard deviation

void scale (struct fileinfo *target, const struct fileinfo *reference) {

int i, k;

/* for 2D referencing of the array */

float (*twoD)[3] = (float (*)[3])target->lab;

for (i=0; i < target->height * target->width; i++) {

for (k=0; k < 3; k++) {

twoD[i][k] -= target->mean[k];

twoD[i][k] *= reference->std[k]/target->std[k];

twoD[i][k] += reference->mean[k];

}

}

}

Algorithm .34: Image scaling

134



www.manaraa.com

#define SCENE 0

#define REFERENCE 1

int main (int argc, char **argv) {

struct fileinfo files[2];

int i;

if (argc < 3) {

fprintf (stderr, "Usage: %s target reference\n", argv[0]);

return EXIT_FAILURE;

}

for (i=SCENE; i <= REFERENCE; ++i) {

files[i].name = argv[i+1];

if (!getImage (&files[i])) {

fprintf (stderr, "Error reading %s \n", files[i].name);

return EXIT_FAILURE;

}

files[i].lab = (float *) malloc(files[i].width *

files[i].height * 3 * sizeof(float));

rgb_to_lab (files[i].rgb, files[i].lab, files[i].width *

files[i].height);

lab_mean (&files[i]);

lab_stddev (&files[i]);

}

scale (&files[SCENE], &files[REFERENCE]);

lab2rgb (files[SCENE].rgb, files[SCENE].lab,

files[SCENE].width * files[SCENE].height);

outputPPM (&files[SCENE], stdout);

free_struct (&files[SCENE]);

free_struct (&files[REFERENCE]);

return EXIT_SUCCESS;

}

Algorithm .35: Color transfer main function

135



www.manaraa.com

Appendix B CS2 Guide

B.1 Credits

4 (3 hour lecture and 2 hour lab)

B.2 Prerequisites

Students taking this course should have had one semester (orequivalent) of programming and are

expected to have experience with the following:

• Basic C programming

• Programming logic (loops and branches)

• Functions and parameter passing

• Pointers

• Built-in data structures (integers, characters, strings,and floats)

• User-defined data structures (structures, enumerated types, typedef)

• Dynamic memory allocation

• Command-line arguments

• File input/output (opening, reading, and writing)

B.3 Course Goals

This course teaches the following computer science skills and techniques:

• Standard programming techniques including recursion.

• Elementary data structures: arrays, linked lists, stacks,and queues, as well as a basic understanding of

the complexity of these structures.

• Large program organization and modularization.

• Function pointers and unions to approximate object-oriented code.

136



www.manaraa.com

• Object-oriented programming and design.

• Incorporation of mathematics into programming.

B.4 Course Description

Each course is structured around a large, semester-long, graphical project. CS2 is structured around

writing a raytracer: a technique for rendering realistic images by modeling the path from a given starting

point to defined objects on a scene. An image can be raytraced by beginning each ray at a given starting

point (eye point) and shooting the rays in the direction of each pixel, computing the color resulting from any

intersections, and print the resulting color.

To do something as large as the raytracer, programmers must break it up into smaller phases. This

raytracer can be broken down into as many as 15 phases, which can then be grouped into assignments as the

instructor wishes. In the following lesson guide are descriptions of each phase, including examples solutions

for the instructor’s sake. These solutions are in C/C++ and are merely for guidance and not meant to imply

that there are not other, better ways to raytrace.

B.5 Resources

The classic reference on raytracing is Glassner’sAn Introduction to Ray Tracing(1989. Academic

Press Ltd.).

B.6 Lesson Guide

B.6.1 Suggested Course Policies

1. Requirement for on time work.

2. Extra credit for early work.

3. Maximum grade for simply meeting guidelines be lower than100%.

4. Allowance of problem discussion and minor debugging withother students.

5. Prohibition of code sharing, whether verbally or electronically.

137



www.manaraa.com

void raytrace (unsigned char *image, int width, int height) {

int i;

for (i=0; i < width*height; ++i) {

image[i*CHANNELS+0]=255; /*CHANNELS=3 for red,green,blue*/

image[i*CHANNELS+1]=0; /* 255,0,0 produces red */

image[i*CHANNELS+2]=0;

}

}

Algorithm .36: Stub raytrace method to fill the image data array with red pixels

B.6.2 Selling the Assignment

This is an important opportunity for the instructor to sell students on the idea of investing time into

an assignment with exciting results. Selling the assignment might include the display of images the students

will be able to create, description of the technique, and explanation of the impact of this technique in industry.

B.6.3 Phase 1

The suggested first phase is the creation of a solid-colored PPM format image file output to standard

out. Although it is not yet raytracing, the program can stillbe given a structure compatible with later raytrac-

ing. Requires knowledge: arrays, array access, data (bytes) functions, data and ASCII output, PPM image

format, and IO redirection.

1. Create araytrace function that fills the providedunsigned char array with the appropriate number

of pixels (RGB values) needed. Each channel of each pixel is represented by a byte in the range

of [0,255], which is the size and range of unsigned characters, making them the best representation

choice. As a note, this method is of course not raytracing yet; instead, it is more of a “stub” method,

providing valid output to test before the next step. e.g. Algorithm .36.

2. Create anoutput method to create the PPM format image file using the flat pixel array generated by

raytrace. PPM format requires the first information in the header to bethe “magic number” indicating

the file type; in this case:P6. After the magic number is the specification of the integers representing

width of the image, the height, and finally the maximum value for each channel (red, green, and blue)

of each pixel in the image. (Each channel will be representedby one byte with maximum values of 0

255.) Each piece of information can be separated by any amount of whitespace and comment lines. (A

comment is a line beginning with a#.) After the magic number, dimensions, and maximum value is a

138



www.manaraa.com

void output (unsigned char *image, int width, int height) {

printf ("P6\n%d %d\n255\n", width, height);

fwrite (image, width*height*CHANNELS, 1, stdout);

}

Algorithm .37: Function for printing a PPM format image to standard out

int main () {

unsigned char image[WIDTH*HEIGHT*CHANNELS];

raytrace (image, WIDTH, HEIGHT);

output(image, WIDTH, HEIGHT);

return EXIT_SUCCESS;

}

Algorithm .38: Main function for invoking the appropriate functions to produce an image file

single (1) whitespace character. (Caution: some systems use two characters to represent end of line.)

Finally, output the entire array of pixels. e.g. Algorithm .37.

3. Finally, create a main method to create the unsigned char array of the appropriate size, call raytrace, and

call output. WIDTH and HEIGHT can be any typical image size, such as 800 by 600. e.g. Algorithm

.38.

B.6.4 Phase 2

The second phase is a creating an image of any specified size. Required knowledge: command-line

arguments, dynamic memory allocation, and string (char*) to integer conversion.

1. Accept command-line arguments in the main. See Algorithm.39.

2. Create anunsigned char pointer to hold the address of the image data.

3. Use the first two command-line arguments as the width and height of the image, if they are provided.

The arguments are character arrays and must be converted to integers using theatoi function (Ascii

TO Int). If no arguments are provided, use a default width andheight.

4. Dynamically allocate an array to hold the data for the image, based on the specified size. Callraytrace

andoutput as before using the image data. Note that in this case freeingthe memory is unnecessary

but is included for completeness.

139



www.manaraa.com

int main (int argc, char *argv[]) {

unsigned char *image;

int width=WIDTH, height=HEIGHT;

if (argc > 2) {

width = atoi(argv[1]);

height = atoi(argv[2]);

}

image = (unsigned char *)malloc (sizeof (unsigned char) *

width * height * CHANNELS);

raytrace (image, width, height);

output(image, width, height);

free (image);

return EXIT_SUCCESS;

}

Algorithm .39: Main function with parameters for accepting command-line arguments

B.6.5 Phase 3

Phase three is creating an image of any size of a sky. Althoughit is a basic step, this phase intro-

duces the fundamental structure of the raytracer. Requiredknowledge: header files, forward declarations,

structures, enumerated types, function pointers, scaling, procedural texturing, and pixel location to 3D coor-

dinate conversion.

1. Create 3D “virtual world” dimensions. The output image ofthe raytracer is 2D, but the objects traced

in the image are defined in a 3D world space to create correct effects. Therefore the locations and

dimensions of objects in the raytracer should be defined as 3Dcoordinates to be later projected onto

the 2D image. The sample output images will reflect the commonmonitor viewing ratio of 4:3 (e.g.

1024,768); therefore, the 3D world coordinates also have a 4:3 ratio. In the example code, thex

component width of the image will be 4 in the range of [-2,2]. They component height will be 3 in the

range of [-1.5,1.5]. Thez component will be zero at the screen with positive and negative values ofz

behind or ahead of the screen. The dimensions can be stored asglobal or local constants, or as part of

a scene structure for storing scene information. See Algorithm .40.

2. Create apoint structure to store floating pointx, y, zcoordinates in the 3D virtual world. They may be

stored in an array or as named variables, or (using aunion) both. Array storage opens the possibility

for iteration. On the other hand, named variables tend to be easier to read. The example code uses an

array with an enumerated type to improve readability.

140



www.manaraa.com

struct scene {

int width; /* will be set to 4 */

int height; /* will be set to 3 */

};

enum coord {X, Y, Z};

struct point {

double coords[3];

};

struct point eye = {{0.0, 1.5, 4.0}}; /* high and well back. */

enum channel {RED, GREEN, BLUE};

struct color {

double channels[3];

};

Algorithm .40: Declaration of the scene structure

3. Create an “eye” point to be the starting point of all the rays to be traced. Each ray shot to create the

image is defined by a starting point and a direction point. At this stage of raytracing, all rays will start

at the eye point, which should be place in a position a little back from the screen and high enough to

see everything.

Raytracers can use either the “left-handed” or the “right-handed” coordinate system. If you are using

the right-handed coordinate system, point your right indexfinger toward positivex (likely the right side

of the screen). Keeping the right index finger toward positivex, point the right middle toward positivey

(up). The right thumb is now pointing to positivez (toward your chest). Under the left-handed system,

your thumb will point away from you (toward the screen). See Figure 24

Either system may be used and may be switched for each semester to prevent code reuse among stu-

dents. If you are using the right-handed system, the eye point should have a positivez value, and the

objects should have negativezvalues.

4. Create a function to compute a direction point for each pixel. Each pixel traced will have a different

direction point to aim for, based on its location in the image. The directions are based on pixel image

coordinates. For example, in an image with dimensions of 800by 600, each pixel has a row value in

the range [0,599] and a column value in the range [0,799]. Each pixel’s row and column values are

converted tox, y, zcoordinates. Thezvalue is always going to be zero, so only thex andy values must

141



www.manaraa.com

Figure 24: Demonstration of the left-handed and right-handed coordinate systems

be computed. Convert the column value to anx value requires scaling by the width. e.g.

widthscene×
column

width− 1
(8)

This scaling should produce a value in the range [0,widthscene]. However, the value needs to be in the

range [−widthscene

2 , widthscene

2 ]. Thus computing thex value requires the scaling and subsequent shift to the

appropriate the range using subtraction. Computingy is similar, buty values start positive and work

down to negative, so the subtraction is reversed. e.g.

x = widthscene×
column

width− 1
−

widthscene

2
y =

heightscene

2
− heightscene×

row
height− 1

z= 0 (9)

5. Create acolor structure to store the color values generated for a pixel by the raytracer. During ray-

tracing, color values will be scaled and added to, making the[0,255] range a little hard to work with.

Instead, each channel of each color will be stored as a floating point value in the range [0.0, 1.0] and

be scaled after raytracing is complete into the byte [0, 255]range. The sample color structure uses the

same format as the point structure.

6. Create asky structure to store information needed to calculate the color value of the sky at a given

point. The color of the sky will never be contingent on the lighting, so the color of the sky is considered

the “ambient” color.

The sample method of creating a sky is using “procedural texturing.” That is, the sky’s color is gener-

142



www.manaraa.com

/* forward declaration of the sky’s ambient computation function */

struct color sky_ambient (struct point spot);

struct sky {

float blue; /* blue contribution */

float base; /* minimum red, green contribution */

float horizon; /* variable red, green contribution */

};

struct scene {

int width; /* will be set to 4 */

int height; /* will be set to 3 */

struct sky sky;

};

struct color sky_ambient(const struct sky *sky,

const struct point *spot){

struct color color;

color.channels[RED] =(1-spot->coords[Y])*sky->horizon+sky->base;

color.channels[GREEN]=(1-spot->coords[Y])*sky->horizon+sky->base;

color.channels[BLUE] =sky->blue;

return color;

}

struct sky {

float blue, base, horizon;

struct color(*ambient)(const struct sky*, const struct point*);

};

Algorithm .41: Declaration of the sky structure

ated “on the fly” by a function. A blue sky my be textured using aconstant blue contribution with the

red and green contribution varying based on the height of thesky. The higher areas of the sky will be

more blue with the lower areas more white. The actual values used for blue contribution, base red and

green contribution, and varying contribution will be stored in asky structure and are something the

students will want to decide. Some students may prefer to have other predominant colors in the sky,

such as gray. The values relating to the sky should be stored in one structure. See Algorithm .41

7. Addsky to thescene structure.

8. Create a function to perform the sky’s ambient color computation. The sky’s ambient value is depen-

dent on they value at the ray’s intersection point with the sky. However,since intersection with the sky

is impossible, instead the normalized ray from the startingpoint to the direction will be used. Unfortu-

143



www.manaraa.com

struct scene set_scene () {

/* 4 is the virtual-world width.

* 3 is the virtual-world height.

* 1.0 is sky’s blue contribution.

* .5 is the sky’s base red, green contribution.

* .4 is the sky’s varying red, green contribution.

* sky_ambient is a function pointer to the ambient function.

*/

struct scene scene = {4, 3, {1.0, .5, .4, sky_ambient}};

return scene;

}

Algorithm .42: Scene set up function

nately, normalization requires many added steps; temporarily, merely the direction point may be used.

A sky will still be produced, giving students interesting output, and the later addition of normalization

to produce a better sky. They value will be subtracted from 1, because 1 is the maximum normalized

y value.

9. Add a function pointer to thesky structure to thesky ambient function. Storing a pointer in the sky

structure to its function will allow to later approximationof object orientation and prepare students for

object in C++.

10. Create a function to set up the scene to trace. The sample program’s virtual world width and height are

4 and 3, respectively. The sky’s blue contribution is as muchas possible, i.e. 1.0. Red and green have a

starting contribution of.5. Red, green values in the sky closer to the horizon will haveadded on up to

.4. Finally, thesky structure holds a function pointer to its ambient function,e.g.sky ambient. e.g.

Algorithm .42.

11. Complete the function for converting pixels into 3D virtual-world coordinate. e.g. Algorithm .43.

12. Create a function to trace an individual pixel, using theexisting starting point (eye) and computing the

direction point. Currently, the only object to trace is the sky, which is always visible from any direction

(unless it is blocked by another object). Therefore, thetrace pixelmerely needs to call the ambient

function associated with thesky variable. At this point the eye point is not being used but, itwill be

when later with direction ray normalization. Most of the parameters in the example code are pointers

merely to improve runtime efficiency. For readability, “in” parameters are always markedasconst.

See Algorithm .44. Notice that, althoughambient is a function pointer, it is not being de-referenced.

144



www.manaraa.com

struct point virtual_coord (int row, int col, int height,

int width, const struct scene *scene){

struct point point;

point.coords[X] = scene->width * (col/((double)(width -1))) -

scene->width/2.0;

point.coords[Y] = scene->height/2.0 -

scene->height * row/((double)(height-1));

point.coords[Z] = 0;

return point;

}

Algorithm .43: Conversion from pixel coordinates to world coordinates

struct color trace_pixel(const struct point *eye,

const struct point *dir,

const struct scene *scene) {

return scene->sky.ambient(&scene->sky, spot);

}

Algorithm .44: Function to compute a specified pixel’s values

Depending on the version of C, the function pointers may needto be dereferenced. e.g. Algorithm .45.

13. Create a method to convert the generated color’s channels to the [0,255] range. Values should be scaled

by 255 and then capped to the range, in case of minor overflow. e.g. Algorithm .46.

14. Finally, update theraytrace to reflect the changes to the raytracer. e.g. Algorithm .47.

The resulting image should look similar to the Figure 25.

B.6.6 Phase 4

The forth phase is creating an image of any specified size witha sky and any number of spheres.

Required knowledge: unions, definition of a sphere, ray-sphere intersection, the quadratic equation, macros,

the dot product, point subtraction, comparing doubles to zero.

1. Create a sphere structure to hold the necessary data for tracing a sphere. A sphere is defined by a

return (*scene->sky.ambient)(&scene->sky, spot);

Algorithm .45: Dereferencing of function pointer

145



www.manaraa.com

void to_byte_range (struct color *color) {

enum channel i;

int channel;

for (i=RED; i <= BLUE; ++i) {

channel = (int)(color->channels[i] * 255 + 0.5);

if (channel > 255) channel = 255;

if (channel < 0) channel = 0;

color->channels[i] = channel;

}

}

Algorithm .46: Conversion of the pixel’s channel values to the [0,255] range

void raytrace (unsigned char *image, int width, int height) {

int i, j, k;

struct point eye = {{0, 1.5, 4.0}};

struct point dir;

struct color color;

struct scene scene = set_scene ();

for (i=0; i < height; ++i) {

for (j=0; j < width; ++j) {

dir = virtual_coord (i, j, height, width, &scene);

color = trace_pixel (&eye, &dir, &scene);

to_byte_range (&color);

for (k=RED; k <=BLUE; ++k) {

image[(i*width +j)*CHANNELS + k] = color.channels[k];

}

}

}

}

Algorithm .47: Complete program for creating a gradient sky pattern

146



www.manaraa.com

Figure 25: Gradient sky

location (x, y, zcoordinate), a radius size (floating point), and an ambient color function. Additionally,

unlike the sky, the sphere will be intersected by only some ofthe rays shot. Thus the sphere will need

an intersection test function.

2. Create thesphere ambient function to return the ambient color at a given point on the sphere. For

now, the spheres will have solid color. An attribute in the sphere structure will store the color of the

sphere, or the color can be hard coded into the ambient function. See Algorithm .48.

3. Create a structure for holding any type of object. With thescene now containing any number of objects

in the scene, these objects must be stored in a way that allowsiteration. Since variables of different

types(e.g. sky and sphere) may not be in one array, a genericobject type must be made to hold either

sky or sphere objects. Use of a union provides space for either a sky or a sphere, but not both. The

ambient and intersection functions can be removed from the sky and sphere structures and put in the

object structure. See Algorithm .49.

4. Update the sphere and sky ambient function to be compatible with the new structure: Algorithm .50.

5. Update the scene structure to hold the address of the objects array. Once definition of the sphere

147



www.manaraa.com

struct sphere {

float radius;

struct point center;

struct color color; /* representation of this object’s color */

struct color (*ambient)(const struct sphere*, const struct point*);

int (*intersection) ();

};

struct color sphere_ambient(const struct sphere* sphere,

const struct point* spot) {

return sphere->color;

}

Algorithm .48: Addition of sphere’s color function

struct sky {

float blue, base, horizon;

};

struct sphere {

float radius;

struct point center;

struct color color;

};

struct object {

struct color (*ambient)(const struct obj*, const struct pt*);

int (*intersection) ();

union geometry {

struct sky sky;

struct sphere sphere;

} type;

};

Algorithm .49: Consolidation of shared attributes in the object structure

148



www.manaraa.com

struct color sphere_ambient (const struct object* obj,

const struct point* spot){

return obj->type.sphere.color;

}

struct color sky_ambient (const struct object *obj,

const struct point *spot) {

struct color color;

color.channels[RED] = (1-spot->coords[Y]) *

obj->type.sky.horizon + obj->type.sky.base;

color.channels[GREEN] = (1-spot->coords[Y]) *

obj->type.sky.horizon + obj->type.sky.base;

color.channels[BLUE] = obj->type.sky.blue;

return color;

}

struct scene {

int width, height;

int num_objs; /* number of objects in the array */

struct object *objects;

};

Algorithm .50: Modification of color functions to match new object structure

functions is complete, the objects may be added to the scene’s array.

6. Create the ray-sphere intersection test formula. A ray isdefined as the set of all pointsp along the line

defined bystartingpoint× (1− t) + directionpoint× t.

{p|sp(1− t) + dp× t} (10)

t is a sort of ratio of the distance along the ray. Ift is 1, the point is at the direction point. Ift is 0,

the point is at the start point.t is not a true distance value, but useful for distance comparison and for

determining whether a ray intersects an object. The distance formula may be used when exact distances

are needed.

Along with the definition of a ray, the definition of a sphere must be used to determine intersection. If

c is the center point of the sphere andr is the radius, a sphere is defined as

{p|(px − cx)
2 + (py − cy)

2 + (pz − cz)
2 = r2} (11)

149



www.manaraa.com

A ray intersects a sphere when both formulas are satisfied. Thus, plug the ray formula into the sphere

formula. i.e.

((spx(1− t) + dpxt) − cx)
2 + ((spy(1− t) + dpyt) − cy)

2 + ((spz(1− t) + dpzt) − cz)
2 = r2 (12)

To calculate thet value, put the above equation in the the formax2 + bx+ c = 0, wherex = t and solve

for t using the quadratic equation. i.e.

((dpx − spx)t + spx − cx)
2 + ((dpy − spy)t + spy − cy)

2 + ((dpz− spz)t + spz − cz)
2 − r2 = 0 (13)

(dpx − spx)2t2 + (dpy − spy)2t2 + (dpz− spz)2t2

+2(dpx − spx)(spx − cx)t + 2(dpy − spy)(spy − cy)t + 2(dpz− spz)(spz− cz)t

+(spx − cx)2 + (spy − cy)2 + (spz − cz)2 − r2 = 0

(14)

((dpx − spx)2 + (dpy − spy)2 + (dpz − spz)2)t2

+2t((dpx − spx)(spx − cx) + (dpy − spy)(spy − cy) + (dpz− spz)(spz − cz))

+(spx − cx)2 + (spy − cy)2 + (spz − cz)2 − r2 = 0

(15)

a = (dpx − spx)2 + (dpy − spy)2 + (dpz − spz)2

b = 2((dpx − spx)(spx − cx) + (dpy − spy)(spy − cy) + (dpz − spz)(spz− cz))

c = (spx − cx)2 × (spy − cy)2 × (spz − cz)2 − r2

(16)

Now use the quadratic equation to solve fort:

t =
−b±

√
b2 − 4ac

2a
(17)

This equation could generate two values oft. These two values represent the two points at which the

ray interests the sphere. If the ray is tangent to the sphere,there will be only one unique value oft.

If both values oft are positive, the ray intersects the sphere in two places ahead of the ray (see Figure

26, and the closer point is the one to use. If botht values are negative, the sphere is behind the ray, and

thus is not visible to this ray. If only onet value is negative, the ray was shot from inside the sphere.

In this case, the positivet value is the only usable one. Thus the ray-sphere intersection is based on the

150



www.manaraa.com

Figure 26: Ray-sphere intersection

#define SQUARE(x)((x)*(x))

Algorithm .51: Square macro

closer positivet value generated by the quadratic equation.

In some cases, not value may exist. Ifb2 − 4ac is negative,t cannot be computed, because
√

b2 − 4ac

would be imaginary. This case occurs if the ray never intersects the sphere.b2 − 4ac is called the

discriminant and determines if an intersection occurs at all.

7. Create mathematical utility functions to aid in the writing of the ray-sphere intersection function:

square, point subtraction, and dot product. These functions, as well as other small utility functions

throughout this project (e.g. bounce, normalize, multiply, etc.) can be integrated as lab assignments.

The square function is needed throughout the intersection test and is very simple to write as a C

macro. Be sure to use enough parentheses to prevent incorrect results in cases involving expressions

like SQUARE(x-y). See Algorithm .51. Point subtraction is merely a componentby component sub-

traction: Algorithm .52. Finally, the dot product of two vectors (or points) is the sum of the product of

each component of the two vectors:p1 · p2 = p1xp2x + p1yp2y + p1zp2z. The dot product is useful in

determining the cosine of the angle between two vectors, becauseX · Y = |X||Y|cosθ. If vectorsX and

Y are normalized, the dot product results incosθ. In this phase, although no cosines of angles need to

be computed, the dot product is handy for computing the values for a, b, andc in sphere intersection.

All three computations require multiplication and summation the components.

151



www.manaraa.com

struct point subtract (const struct point *p1, const struct point *p2) {

struct point sum;

enum coord i; /* an integer counter will also suffice */

for (i=X; i <= Z; ++i) {

sum.coords[i] = p1->coords[i] - p2->coords[i];

}

return sum;

}

double dot_prod (const struct point *p1, const struct point *p2) {

double result=0.0;

enum coord i;

for (i=X; i <= Z; ++i) {

result += p1->coords[i] * p2->coords[i];

}

return result;

}

Algorithm .52: Point subtraction function

struct intersection {

double t;

struct point location;

struct object *obj;

};

Algorithm .53: Intersection structure

8. Create an intersection structure to be used with the ray-sphere intersection function. Intersection may

be computed using the sphere’s center and radius, the starting point and direction. The resultingt and

intersection point additionally need storage locations. It is suggested that thet value, location, and a

pointer to the object hit (in this case, the sphere passed in)are all stored in oneintersection structure

to minimize overhead. See Algorithm .53.

9. Write the ray-sphere intersection function. The function accepts a sphere object to test for intersection,

a ray starting point, and direction point. The function willreturn a boolean value indicating whether an

intersection occurred, as well as an intersection structure variable (via pointer). Note that thestruct

object * parameter will not be altered, but it cannot be declared constant and have its address stored

in the intersection struct variable. See Algorithm .54. Nowthea, b, andc values may be computed for

use in the quadratic equation. Their computation will be simplified with the use of the utility functions.

The computeda, b, andc values are now used in the quadratic equation. First, it mustbe determined

152



www.manaraa.com

int sphere_intersect (struct object *obj, const struct point *sp,

const struct point *dp, struct intersection *intersect) {

enum coord i; /* used in the for loop */

double t;

struct point dp_minus_sp = subtract (dp, sp);

struct point sp_minus_c = subtract (sp, &obj->type.sphere.center);

double a = dot_prod (&dp_minus_sp, &dp_minus_sp);

double b = 2.0 * dot_prod (&dp_minus_sp, &sp_minus_c);

double c = dot_prod (&sp_minus_c, &sp_minus_c) -

SQUARE (obj->type.sphere.radius);

double discr = b*b - 4.0 * a * c;

if (discr >= 0) {

t = (-b - sqrt(discr))/(2.0*a);

if (t < MIN) {

t = (-b + sqrt (discr))/(2.0*a);

}

if (t > MIN) { /* if t is positive, there is an intersection */

for (i=X; i <= Z; ++i) {

intersect->location.coords[i] = sp->coords[i]*(1-t)

+ dp->coords[i]*t;

}

intersect->t = t;

intersect->obj = obj;

return 1;

}

}

return 0;

}

Algorithm .54: Sphere intersection function

153



www.manaraa.com

/* in the header */

#define MAX 60

/* in the main code */

int sky_intersect (struct object *obj, const struct point *sp,

const struct point *dp, struct intersection *intersect) {

intersect->location = *dp;

intersect->t = MAX;

intersect->obj = obj;

return 1;

}

Algorithm .55: Sky intersection function

whether the determinant. If it is not, the ray never intersects the sphere. Next is the computation of the

first t value. If t too small to be significant, the othert value should be computed and used. Because

floating point values are not infinitely precise,t value cannot simply be compared to zero. It is possible

for the error in a floating point number to give a false positive. Instead,t should be compared to some

minimum value to allow room for error. A suggested value for MIN is .000001.

If the ray intersects the sphere, thet value can be used to calculate the intersection point (x, y, zcoordi-

nates). e.g.location= sp(1− t) + dp× t.

Finally, if t was not greater than zero, there was no intersection, an the function should return false.

10. Create a ray-sky intersection function that always returns true. From this point on, all objects raytraced

will need to have ambient functions and intersection functions. If sky has an intersection function, ob-

ject intersections will be simplified by the parallelism. For each object in the scene, will will check for

intersection and choose the closest object. Sky will alwaysbe intersected, but at the furthest distance:

MAX. MAX is a constant defining the largest distance any ray will travel. A safe large distance is 60.

There may be larger or smaller distances that work better, depending on the implementation. Sky’s

intersection point will still be the direction point, but once normalization is available, sky’s intersection

point should be the normalized ray from the starting point tothe direction point. See Algorithm .55.

11. Update the object structure to have the full signature ofthe intersection functions. This is important to

add, because with a full signature, the C compiler can identify any mistakes in calling the functions.

See Algorithm .56.

12. Set up the scene. The example scene in Algorithm .57 has two spheres and a sky.

154



www.manaraa.com

struct object {

struct color (*ambient)(const struct obj*, const struct pt*);

int (*intersection) (struct object *, const struct point *,

const struct point *, struct intersection *);

union geometry {

struct sky sky;

struct sphere sphere;

} type;

};

Algorithm .56: Signature information added to the intersection function pointer declaration

13. Updatetrace pixel to locate the closest object and return its ambient color: Algorithm .58. The

raytracer should now create an image with blue sky, a red circle, and a cyan circle (Figure 27).

The spheres are very flat, because there is no diffuse lighting yet. Additionally, the sphere on the edge

of the scene may appear slightly stretched: Figure 28.

This stretching effect is caused by the projection of the 3D scene onto a 2D image.Rays traced toward

the edges intersect objects that are outside of the 2D image dimensions. Thus the edges of the image

tend to be stretched. This effect can be reduced by moving the eye point further back from the image.

B.6.7 Phase 5

The fifth phase is creating an image of any specified size with asky, any number of spheres, and a

horizontal floor. Required knowledge: Ray-floor intersection.

1. Create a floor structure to store all floor-related information. The example floor is an infinite, horizontal

plane with a solid color. Therefore, The floor’s definition ismerely a color and ay value called “height.”

See Algorithm .59.

2. Add the floor structure to the union in the object structure, as in Algorithm .60.

3. Create afloor ambient function to return the color of the floor, as in Algorithm .61.

4. Create afloor intersect function to determine whether a ray intersects the floor. SeeAlgorithm

.62. Again, a ray is defined as{p|sp(1 − t) + dp × t}. The floor is an infinite plane at a specified

height. Therefore, the floor is defined as the set of all pointswhosey values equal the floor’s height.

155



www.manaraa.com

struct scene set_scene () {

struct scene scene;

int i=0;

scene.width = 4;

scene.height = 3;

scene.num_objs = 3;

scene.objects = (struct object *) malloc

(sizeof (struct object) * scene.num_objs);

/* first object: a dark red sphere on the lower right */

scene.objects[i].type.sphere.center.coords[X] = 1.4;

scene.objects[i].type.sphere.center.coords[Y] = -1.25;

scene.objects[i].type.sphere.center.coords[Z] = -1.5;

scene.objects[i].type.sphere.radius = .75;

scene.objects[i].type.sphere.color.channels[RED]=139.0/255.0;

scene.objects[i].type.sphere.color.channels[GREEN] = 0.0;

scene.objects[i].type.sphere.color.channels[BLUE] = 0.0;

scene.objects[i].ambient = sphere_ambient;

scene.objects[i].intersection = sphere_intersect;

/* second object: a cyan sphere on the left */

++i;

scene.objects[i].type.sphere.center.coords[X] = -1.5;

scene.objects[i].type.sphere.center.coords[Y] = -0.25;

scene.objects[i].type.sphere.center.coords[Z] = -2.25;

scene.objects[i].type.sphere.radius = .75;

scene.objects[i].type.sphere.color.channels[RED] = 0.0;

scene.objects[i].type.sphere.color.channels[GREEN] = 1.0;

scene.objects[i].type.sphere.color.channels[BLUE] = 1.0;

scene.objects[i].ambient = sphere_ambient;

scene.objects[i].intersection = sphere_intersect;

/* third object: a blue sky */

++i;

scene.objects[i].type.sky.blue = 1.0;

scene.objects[i].type.sky.base = .5;

scene.objects[i].type.sky.horizon = .4;

scene.objects[i].ambient = sky_ambient;

scene.objects[i].intersection = sky_intersect;

return scene;

}

Algorithm .57: Specification of the objects in the scene

156



www.manaraa.com

struct color trace_pixel (const struct point *eye,

const struct point *dir,

const struct scene *scene) {

int i;

struct intersection curr, closest;

closest.t = MAX+1;

/* find the closest intersected object (i.e. the intersected

object with the smallest t value. */

for (i=0; i < scene->num_objs; ++i) {

if (scene->objects[i].intersection (&scene->objects[i],

eye, dir, &curr) && curr.t < closest.t) {

closest = curr;

}

}

return closest.obj->ambient (closest.obj, &closest.location);

}

Algorithm .58: Addition of nearest object search

Figure 27: Blue sky and filled circles

157



www.manaraa.com

Figure 28: Ray scene projection

struct floor {

int height;

struct color color;

};

Algorithm .59: Specification of the floor structure

struct object {

struct color (*ambient)(const struct obj*, const struct pt*);

int (*intersection) (struct object *, const struct point *,

const struct point *, struct intersection *);

union geometry {

struct sky sky;

struct sphere sphere;

struct floor floor;

} type;

};

Algorithm .60: Addition of floor structure to the geometry union

struct color floor_ambient(const struct object* obj,

const struct point* spot){

return obj->type.floor.color;

}

Algorithm .61: Floor’s color function

158



www.manaraa.com

int floor_intersect (struct object *obj, const struct point *sp,

const struct point *dp, struct intersection *intersect) {

/* in the floor_intersection function */

if (fabs (dp->coords[Y]-sp->coords[Y]) < MIN) return 0;

intersect->t = (obj->type.floor.height - sp->coords[Y])/

(dp->coords[Y] - sp->coords[Y]);

if (intersect->t < MIN) return 0;

intersect->obj = obj;

intersect->location.coords[X] = sp->coords[X] *

(1.0-intersect->t) + dp->coords[X] * intersect->t;

intersect->location.coords[Y] = obj->type.floor.height;

intersect->location.coords[Z] = sp->coords[Z] *

(1.0-intersect->t) + dp->coords[Z] * intersect->t;

return 1;

}

Algorithm .62: Floor intersection function

i.e. {p|py = height}. The ray intersects the floor where both equations are satisfied:

(spy(1− t) + dpyt = height

(dpy − spy)t + spy = height
(18)

t =
height− spy

dpy − spy
(19)

If the t value is negative, the intersection with the ray occurs before the starting point and is not visible.

if dpy = spy, the ray is parallel to the floor and will not intersect it. If the values are the same as the

floor’s height, then technically the ray is traveling insidethe floor, and will be ignored. Unfortunately,

determining whetherdpy = spy is difficult, because floating point representation makes it unlikely that

the two values will ever be identical. Instead of direct comparison, the absolute difference between the

values should be compared to a minimum value MIN, and if the difference is less, the two points will

be treated as equal.

Once ray-floor intersection is confirmed, the intersection point must be computed. Once again,location=

sp(1 − t) + dpt. They value, however, will always be the height of the floor. Thus only x andz and

must be computed.

5. Add a floor to the scene in theset scene function: Algorithm .63. The resulting image will have cyan

159



www.manaraa.com

struct scene set_scene () {

struct scene scene;

int i=0;

scene.width = 4;

scene.height = 3;

scene.num_objs = 4;

scene.objects = (struct object *) malloc (sizeof

(struct object) * scene.num_objs);

/* first object: a beige floor */

scene.objects[i].type.floor.height = -2;

scene.objects[i].type.floor.color.channels[RED] = 1.0;

scene.objects[i].type.floor.color.channels[GREEN] = 235.0/255.0;

scene.objects[i].type.floor.color.channels[BLUE] = 205.0/255.0;

scene.objects[i].ambient = floor_ambient;

scene.objects[i].intersection = floor_intersect;

/* second object: a dark red sphere on the lower right */

++i;

/* . . . */

Algorithm .63: Addition of the floor to the scene

struct floor {

int height;

struct color color1, color2;

};

Algorithm .64: Two colors in the floor structure

and dark red circles, a blue sky, and a beige floor: Figure 29.

B.6.8 Phase 6

The six phase creates an image of any specified size with a sky,any number of spheres, and a check-

ered floor. The checkered floor will have two alternating colors applied procedurally. Required knowledge:

Mathematical functionf loor and modular arithmetic.

1. Update thefloor structure to have two colors. See Algorithm .64.

2. Update theset scene to set both floor colors. See Algorithm .65.

3. Update thefloor ambient function to create a checkered pattern. The checkering willbe based on the

x andz value of the intersection location. (They value will always be the floor height.) Each checker

160



www.manaraa.com

Figure 29: Blue sky, circles, and floor

/* first object: a checkered floor */

scene.objects[i].type.floor.height = -2;

scene.objects[i].type.floor.color1.channels[RED] = 1.0;

scene.objects[i].type.floor.color1.channels[GREEN] = 235.0/255.0;

scene.objects[i].type.floor.color1.channels[BLUE] = 205.0/255.0;

scene.objects[i].type.floor.color2.channels[RED] = 139.0/255.0;

scene.objects[i].type.floor.color2.channels[GREEN] = 69.0/255.0;

scene.objects[i].type.floor.color2.channels[BLUE] = 19.0/255.0;

scene.objects[i].ambient = floor_ambient;

scene.objects[i].intersection = floor_intersect;

Algorithm .65: Specification of the floor colors

161



www.manaraa.com

Figure 30: Checker algorithm

will be a square whose width and height are each size 1 in worldcoordinates. Each color begins at a

round world coordinate value (-2.0, -1.0, 0.0, 1.0, etc.) and ends at the next integer value.

The color of the floor at a given location will be based on the mathematical floor of thex andzvalues.

The floor of a numberx (bxc) is the largest integer less than or equal tox. The floor function is used for

both x andz to generate two integers:bxc andbzc. At every other square, the sum of these integers is

even. See Figure 30.

Therefore, a simple way to apply the checkered texture procedurally is to apply one color whenever the

sum ofbxc andbzc is even and the other when the sum is odd. Of course, even and odd values can be

determined using modulo 2. See Algorithm .66 and Figure 31.

B.6.9 Phase 7

The seventh phase is the use of an Object-Oriented program inan OO language to create an image

of any specified size with a sky, any number of spheres, and a checkered floor. Converting to C++ can

be postponed, but it is not suggested. At this point, students have actually implemented Object-Oriented

programs, but have done so with unions and function pointers. Staying with a procedural programming from

this point on will not add any knowledge, and beginning with an OO language will introduce many new

concepts with ample time for practicing programming in a newparadigm. Additionally, an early conversion

to C++ reduces the amount of code that will need to be rewritten in C++. Covered knowledge: C++ classes,

162



www.manaraa.com

struct color floor_ambient(const struct object* obj,

const struct point* spot){

int floorX = (int) floor (spot->coords[X]);

int floorZ = (int) floor (spot->coords[Z]);

if ((floorX+floorZ)%2==0) {

return obj->type.floor.color1;

} else {

return obj->type.floor.color2;

}

}

Algorithm .66: Functional floor texture

Figure 31: Sky, circles, and checkered floor

163



www.manaraa.com

#ifndef POINTCLASS

#define POINTCLASS

// all of the Point header code

#endif

Algorithm .67: If-not-defined preprocessor directive

C++ inheritance, virtual methods, purely virtual methods, references, static methods, destructors, operator

overloading, anonymous structures, constructor initialization, default parameters, constant member functions,

typedef, iostreams, and make files.

Not all covered knowledge needs to be introduced at this phase. More advanced information is

provided for future direction.

1. Design the raytracer. The sample raytracer has many functions and variables that should be grouped

appropriately. Most structures will become classes, and functions that operate on those structures will

become methods of those classes. The structures point, color, object, sky, sphere, floor, and scene

should all become classes, as also may be the raytracer.

2. Create the Point class. The Point class will holdx, y, zcoordinates, methods for initializing, accessing,

and modifying those coordinates, the maximum coordinate value in the raytracer, the minimum coor-

dinate value considered significant, a method for 2D to 3D conversion, and point-related operations,

such as subtraction and dot product.

Note that since the Point header will likely be included in multiple files, it may be helpful to surround

the entire header with the notation in Algorithm .67. The components in the Point class can be named

doubles, an array of doubles or both. Not all C++ compilers will allow anonymous structures as shown

in Algorithm .68. If not, name them. Declare the maximum distance allowed in the scene and the

minimum distance considered significant.

The x, y, z values will be initialized in the point class constructor. The constructor must accept up

to 3 values, but it is fine to have default component values if the user does not wish to specify the

components initially. In Object-Oriented programming, instance variables, such as the coordinates, are

typically private to allow the class to control any access and modification. Therefore, accessor methods

should be provided to access these components. Since these methods are accessors only and do not alter

the state of the object (i.e. they do not change any instance variables), they should be declared constant

methods. Note that putting"void" in the parameters is not necessary. It is C notation for confirming

164



www.manaraa.com

// in the header file Point.h

typedef enum {X, Y, Z} coord;

class Point {

private:

union {

struct {

double x, y, z;
};

double xyz[3];

};

public:

static const double MAX = 60.0;

static const double MIN = 0.000001;

Point (double x=0.0, double y=0.0, double z=0.0);

double get_x(void) const { return x; }

double get_y(void) const { return y; }

double get_z(void) const { return z; }

double operator[] (int i) const { return xyz[i];}

double &operator[] (int i) { return xyz[i];}

double dot_prod (const Point &pt) const;

Point subtract (const Point &pt) const;

Point operator-(const Point &pt) const;

};

Algorithm .68: Point class

165



www.manaraa.com

that the method does not have parameters. Another more intuitive way to access the components is

using bracket notation. e.g.value = point[X]; Bracket notation is very natural and can be use for

accessing or modifying values. Thus, the Point class is a good place to use operator overloading. There

are two bracket operators the Point class can overload: the constant accessor and the accessor/mutator.

The constant accessor operator is a constant method (as evidenced by the modifierconst occurring

after the method signature) that returns a copy of the value at the specified location.

The accessor/mutator bracket operator is not constant and returns a reference to the value at the speci-

fied location. References (specified with ampersands (&)) are new in C++. They are similar to pointers,

but they require less notation. If a reference is returned from a method in C++, the compiler determines

whether the value should be used as a reference or as the actual value. Therefore the bracket operator

can work with both of the following code snippets:point[X] = 5; andvalue = point[X];

Since they operate exclusively on Point objects, dot product and subtract will be part of the Point

class. These methods will act on the object the method was called upon and the object passed in.

For efficiency, parameters can be passed as references, since references require less space than Point

objects. Since these parameters will not be modified, they should be declared constant. As before,

since these methods are not altering the state of the object,they should also be declared constant.

The built-in subtraction operator may be overloaded for thepoint class, instead of naming the sub-

traction method “subtract.” Overloading allows more intuitive operations:Point diff = point1 -

point2;The subtraction operator may be overloaded by merely changing the method nameoperator-.

To comply with the standard definition of the subtraction operator, the method must return a copy of

the result of the subtraction (a copy, because the result is temporary) and may not alter the state of the

objects involved. Therefore the method should be constant,as should be the parameter. The Point result

is returned by copy. The completed implementation of the Point class is shown in Algorithm .69. The

constructor can set thex, y, zvalues through assignments (e.g.x = x in), or by using initialization, as

shown in the so-called member initialization list in Algorithm .69. Initialization is more efficient than

assignment, because the values of the attributes are set only once. With assignment,x, y, andz would

be initialized to default values before the assignment occurred. An object can access private members

of another object of the same type.

3. Create the Color class. The Color class will hold red, green, blue values as before. The structure of the

Color class is very similar to the Point class, and thereforeneeds little explanation. Again, not all C++

166



www.manaraa.com

#include "Point.h"

Point::Point (double x_in, double y_in, double z_in):

x(x_in), y(y_in), z(z_in) {}

double Point::dot_prod (const Point &pt) const {

return x * pt.x + y * pt.y + z * pt.z;
}

Point Point::operator- (const Point &pt) const {

return Point (x-pt.x, y-pt.y, z-pt.z);

}

Algorithm .69: Point class implementation

compilers will allow anonymous structures as shown in Algorithm .70. The color class should also

handle the conversion from range [0.0, 1.0] to [0.0, 255.0].The example method converts “this” object

to [0,255] and returns a reference to this. After class definition is implementation, begun in Algorithm

.71.

Theto byte rangemethod uses the bracket operator to access the RGB values. The bracket operator

must be used on an object of theColor class. The “this” pointer to refer to the object the method is

called on. Sincethis is a pointer, it must first be dereferenced before accessing values with the bracket

operator.

4. Create the generic Object class to be the base class from which all the objects in the scene will inherit.

The Object class uses the intersection structure, as well asthe Point class and Color class.

Since no methods need to be associated with intersection, itcan remain a structure. This may be a good

time to begin usingtypedef, but it is not necessary. See Algorithm .72. Now the Object class can be

defined. Since the Object class will be the base class, its methods must be markedvirtual to allow

them to be overridden by inheriting classes. Additionally (if you wish) the methods can be “purely

virtual,” meaning they must be overridden by a class that hasinstantiateable objects. Otherwise, an

error is generated. To make a method purely virtual, mark it as virtual and place=0; after the

signature. See Algorithm .73.

5. Create the Scene class to handle all Scene related information, such as the 3D world width and height,

and an array of scene objects. An additional method suggested is a “first visible” method that returns

the first intersection by a given ray. This method belongs in Scene, because the Scene class actually

contains the objects.

167



www.manaraa.com

// in Color.h

typedef enum {RED, GREEN, BLUE} channel;

class Color {

private:

union {

struct {

double red, green, blue;

};

double rgb[3];

};

public:

Color (double r=0.0, double g=0.0, double b=0.0);

double get_red (void) const { return red; }

double get_green(void) const { return green; }

double get_blue (void) const { return blue; }

double &operator[] (int i) { return rgb[i];}

double operator[] (int i) const { return rgb[i];}

Color &to_byte_range (void);

};

Algorithm .70: Color class definition

// in Color.cpp

#include "Color.h"

Color::Color (double r, double g, double b): red(r), green(g), blue(b)

{}

Color &Color::to_byte_range (void) {

for (int i=RED; i <= BLUE; ++i) {

(*this)[i] = (*this)[i] * 255 + 0.5;

if ((*this)[i] > 255) (*this)[i] = 255;

if ((*this)[i] < 0) (*this)[i] = 0;

}

// Since "this" is a pointer, it must be dereferenced first

// in order to be converted to a reference.

return *this;

}

Algorithm .71: Beginning of Color class implementation

168



www.manaraa.com

// in Object.h

#include "Color.h"

#include "Point.h"

// forward declaration to allow intersection to reference Objects.

class Object;

typedef struct {

Object *obj;

double t;

Point spot;

} intersection;

Algorithm .72: Definition of intersection structure

class Object {

public:

virtual Color get_ambient (const Point &spot) const = 0;

virtual bool get_intersect(const Point &sp, const Point &dp,

intersection &intersect) =0;

};

Algorithm .73: Definition of purely virtual Object methods to be overriddenby child classes

Any methods or data attributes in Scene that do not depend on instance variables should be declared

static. Only one copy of each static method and attribute exists and can be accessed (without an object)

using the class name and scope resolution operator, e.g.Scene::WIDTH. Since Scene has an array of

objects, it must include the Object header. See Algorithm .74. The array of Objects will actually hold

Object pointers. Since Object cannot be instantiated (it has purely virtual methods), it is best to have

the array be pointers to Objects.

The array of Objects will be dynamically allocated and filledwith dynamically allocated elements.

Therefore, the Scene class needs a destructor to perform clean up after Scene objects are deleted. A

destructor is responsible for deleting any memory allocated by the object on which it is called.

Once all the allocated memory for all elements in the array has been de-allocated, the array itself must

be de-allocated. Arrays must be deleted using the bracket operator to specify to the environment to free

the entire array.

Thefirst visible method accepts a starting point and a direction point and returns an intersection

structure holding a pointer to the closest object intersected (closest to starting point), the intersection

169



www.manaraa.com

#include <stdlib.h>

#include "Object.h"

class Scene {

private:

static const int WIDTH = 4;

static const int HEIGHT= 3;

const int NUM_OBJS;

Object **objects;

public:

Scene (void);

˜Scene (void) {

for (int i=0; i < NUM_OBJS; ++i) {

delete objects[i];

}

delete [] objects;

}

intersection first_visible (const Point &, const Point &) const;

static Point virtual_coord (int row, int col, int h, int w);

};

Algorithm .74: Scene class header file

point, and the distancet along the ray from the starting point to the intersection point. Note: sp+ dp

could be included in the intersection structure.

Thevirtual coordmethod is static, because its result does not rely on any instance variables.

Completion of the Scene class in theScene.cpp file will have to wait until all scene object classes are

defined.

6. Create the Sky class to inherit from the Object class. The Sky class must define values for the blue, hori-

zon, and base red/green values. Additionally, Sky will override Object’s purely virtual get ambient

andget intersectmethods. The Sky class must include the Object header file in order to access the

Object class. See Algorithm .75. The implementation of the Sky class is as would be expected, as seen

in Algorithm .76. Theget ambientmethod returns a new Color object by copy.

As usual, intersection with the sky is always possible and occurs at the largest possible distance. In the

future, the intersection spot should be the normalized ray from spto dp.

7. Create the Sphere class to inherit from the Object class. The Sphere class defines radius, center, and

color instance variables, a constructor, and overrides thevirtual Object methods. See Algorithm .77.

The constructor and ambient methods are straightforward inSphere.cpp, as in Algorithm .78. The

170



www.manaraa.com

// in Sky.h

#include "Object.h"

class Sky : public Object {

private:

double horizon, base, blue;

public:

Sky (double, double, double);

virtual Color get_ambient (const Point&) const;

virtual bool get_intersect(const Point&, const Point&,

intersection&);

};

Algorithm .75: Definition of the Sky class

// in Sky.cpp

#include "Sky.h"

Sky::Sky (double hor, double ba, double bl) :

horizon (hor), base (ba), blue (bl) {}

Color Sky::get_ambient (const Point &spot) const {

double redgreen = (1-spot[Y])*horizon + base;

return Color(redgreen, redgreen, blue);

}

bool Sky::get_intersect(const Point &sp, const Point &dp,

intersection &intersect) {

intersect.t = Point::MAX;

intersect.spot = dp;

intersect.obj = this;

return true;

}

Algorithm .76: Sky class code file

171



www.manaraa.com

// in Sphere.h

#include "Object.h"

#include <math.h>

class Sphere : public Object {

private:

double radius;

Point center;

Color color;

public:

Sphere (double, const Point &, const Color &);

virtual Color get_ambient (const Point &spot) const;

virtual bool get_intersect(const Point &sp, const Point &dp,

intersection &intersect);

};

Algorithm .77: Sphere class definition

intersection method is much neater than the C version, due tooperator overloading and access to

instance variables.

Since the Point class overloads the subtraction operator, point subtraction uses much simpler notation.

Thedot product function is now a member of the Point class and must be called on a Point object.

The Point class’s bracket operator cleans up access to the point components.

8. Create the Floor class to inherit from the Object class. The Floor class defines height and color attribute

and a constructor, and it overrides the Object’s virtual methods. See Algorithm .79.

The exampleget ambient method uses the ternary operator, which is available in C as well. See

Algorithm .80. If the condition is true, the expression returns the first value. If not, the expression

returns the second value.

9. Create the Scene.cpp file to complete the Scene class definition. In C++, thenew operator is used

to dynamically allocate memory. See Algorithm .81. Thefirst visible method uses static dec-

larations to define the intersection variables. These variables do not need to be static, but declaring

them static ensures that they are created only once at the beginning of the program, rather than ev-

ery timefirst visible is invoked. The are initialized once at the beginning of execution, and then

closest.t is re-set toMAX+1 every time the method is invoked. See Algorithm .82.

10. Create the Raytracer class to pull it all together. C++ iostreams may be used to output the image. (Of

172



www.manaraa.com

// in Sphere.cpp

#include "Sphere.h"

Sphere::Sphere (double r, const Point &cen, const Color &col) :

radius (r), center (cen), color (col) {}

Color Sphere::get_ambient (const Point &spot) const {

return color;

}

bool Sphere::get_intersect(const Point &sp, const Point &dp,

intersection &intersect) {

double t;

Point dp_minus_sp = dp - sp;

Point sp_minus_c = sp - center;

double a = dp_minus_sp.dot_prod (dp_minus_sp);

double b = 2.0 * dp_minus_sp.dot_prod (sp_minus_c);

double c = sp_minus_c.dot_prod (sp_minus_c) - radius * radius;

double discr = b*b - 4.0 * a * c;

if (discr >= 0) {

t = (-b - sqrt(discr))/(2.0*a);

if (t < MIN) {

t = (-b + sqrt (discr))/(2.0*a);

}

if (t > MIN) {

for (int i=X; i <= Z; ++i) {

intersect.spot[i] = sp[i]*(1-t)+ dp[i]*t;

}

intersect.t = t;

intersect.obj = this;

return true;

}

}

return false;

}

Algorithm .78: Sphere class

173



www.manaraa.com

#include "Object.h"

#include <math.h>

class Floor : public Object {

private:

double height;

Color color1, color2;

public:

Floor (double, const Color &, const Color &);

virtual Color get_ambient (const Point &spot) const;

virtual bool get_intersect(const Point &sp, const Point &dp,

intersection &intersect);

};

Algorithm .79: Floor class definition

#include "Floor.h"

Floor::Floor (double ht, const Color &c1, const Color &c2) :

height (ht), color1(c1), color2(c2) {}

Color Floor::get_ambient (const Point &spot) const {

int floorX = (int) floor (spot[X]);

int floorZ = (int) floor (spot[Z]);

return ((floorX+floorZ)%2==0)? color1 : color2;

}

bool Floor::get_intersect(const Point &sp, const Point &dp,

intersection &intersect) {

if (fabs (dp[Y]-sp[Y]) < Point::MIN) return false;

intersect.t = (height - sp[Y])/(dp[Y] - sp[Y]);

if (intersect.t < Point::MIN) return false;

intersect.spot[X] = sp[X] * (1.0-intersect.t) + dp[X] * intersect.t;

intersect.spot[Y] = height;

intersect.spot[Z] = sp[Z] * (1.0-intersect.t) + dp[Z] * intersect.t;

intersect.obj = this;

return true;

}

Algorithm .80: Floor class implementation

174



www.manaraa.com

#include "Scene.h"

Scene::Scene (void) : NUM_OBJS(4) {

int i=0;

objects = new Object* [NUM_OBJS];

objects[i++] = new Floor (-2, Color (1.0, 235.0/255.0, 205.0/255.0),

Color (139.0/255.0, 69.0/255.0, 19.0/255.0));

objects[i++] = new Sphere (.75, Point (1.4, -1.25, -1.5),

Color (139.0/255.0, 0.0, 0.0));

objects[i++] = new Sphere (.75, Point (-1.5, -.25, -2.25),

Color (0.0, 1.0, 1.0));

objects[i++] = new Sky (.4, .5, 1.0);

}

Algorithm .81: Initialization of Objects in the Scene

intersection Scene::first_visible (const Point &sp, const Point &dp)

const {

static intersection curr = {NULL, Point::MAX+1, Point()};

static intersection closest (curr);

closest.t = Point::MAX+1;

for(int i=0; i < NUM_OBJS; ++i) {

if (objects[i]->get_intersect (sp, dp, curr) && curr.t < closest.t

) {

closest = curr;

}

}

return closest;

}

Point Scene::virtual_coord(int row,int col,int img_h,int img_w){

return Point (WIDTH * (col/(double)(img_w -1)) - WIDTH/2.0,

HEIGHT/2.0 - HEIGHT*row/(double)(img_h -1),0.0);

}

Algorithm .82: Scene class’s first intersected method and coordinate computation method

175



www.manaraa.com

#include <iostream>

#include "Scene.h"

using std::cout;

using std::endl;

class Raytracer {

private:

static const int CHANNELS=3;

static const int DEFAULT_WIDTH=800;

static const int DEFAULT_HEIGHT=600;

int width, height;

Point eye;

Scene scene;

unsigned char *image;

Color trace_pixel (const Point &sp, const Point &dp);

public:

Raytracer (int w=DEFAULT_WIDTH , int h=DEFAULT_HEIGHT);

˜Raytracer (void) {

delete []image;

}

void create_image(void);

void trace (void);

void output (void) const;

};

Algorithm .83: Raytracer class definition

courseprintf andfwritewill still work.) Sincecout andendl are part of thestd namespace, their

declarations must be specified with thestd name and the scope resolution operator. See Algorithm

.83. Since the raytracer allocates an array of image data, the destructor must deallocate the memory

when the raytracer object is deleted.

The Raytracer class constructor will initialize the dimensions of the image, the eye point location, the

scene, and will dynamically allocate memory to store the resulting image data, as in Algorithm .84. The

given method is not necessary, but it simplifies the creationof raytraced images. The exampleoutput

method uses iostreams to output the image. (Of course,printf andfwrite are still available.) There

must be only one character after the 255. For this reason\n is used instead ofendl. In some operating

systems,endl would produce 2 characters:\r\n.

Thetrace method invokes the staticvirtual coord method. A static method in another class can

176



www.manaraa.com

// in Raytracer.cpp

#include "Raytracer.h"

Raytracer::Raytracer (int w, int h) : width (w), height(h),

eye (0.0, 1.5, 4.0), scene() {

image = new unsigned char [width*height*CHANNELS];

}

void Raytracer::create_image (void) {

trace();

output();

}

void Raytracer::output (void) const {

cout <<"P6"<<endl<<width << " " << height << endl << "255\n";

cout.write ((char *)image, width * height * CHANNELS);

}

Color Raytracer::trace_pixel (const Point &sp, const Point &dp) const {

intersection intersect = scene.first_visible (sp, dp);

return intersect.obj->get_ambient (intersect.spot);

}

Algorithm .84: Raytracer implementation

by called by the class name and use of the scope resolution operator. See Algorithm .85.

11. Create a main function to create and run the raytracer.

12. Create a make file to compile all the files together. Of course, the make file is not required, but it is

very helpful. See Algorithm .86. The image should come out the same as before the conversion.

B.6.10 Phase 8

The eighth phase is an object-oriented program that createsan image of any specified size with a sky,

any number of spheres, a checkered floor, and shadows. The lights that cast the shadows will be child classes

of the Sphere class. Required knowledge: protected attributes, static local variables, and diffuse lighting.

1. Update the Sphere class to allow for inheritance. Since a light is defined as a round object with a radius,

location, and color, Sphere is the perfect base class for Light. Every attribute that Light needs to inherit

must be markedprotected, and every method Light needs to override must be virtual. See Algorithm

.87.

2. Create the Light class. Light will inherit from Sphere butwill always have a white color. (In the future,

colored lights are an option.) Additionally, since light locations are central to the creation of shadows,

177



www.manaraa.com

void Raytracer::trace (void) {

Point dir;

Color color;

for (int i=0; i < height; ++i) {

for (int j=0; j < width; ++j) {

dir = Scene::virtual_coord (i, j, height, width);

color = trace_pixel (eye, dir);

color.to_byte_range ();

for (int k=RED; k <=BLUE; ++k) {

image[(i*width +j)*CHANNELS + k] = (unsigned char)color[k];

}

}

}

}

int main (int argc, char *argv[]) {

Raytracer *tracer;

if (argc > 2) {

tracer = new Raytracer (atoi(argv[1]), atoi(argv[2]));

} else {

tracer = new Raytracer ();

}

tracer->create_image ();

delete tracer;

}

Algorithm .85: Raytracer main function and trace method

HEADERS = Raytracer.h Color.h Point.h Floor.h Sky.h Scene.h \\

Sphere.h Object.h

OBJS = Raytracer.o Color.o Point.o Floor.o Sky.o Scene.o Sphere.o

# Conversion rule: source_extension -> object extension

#

.cpp.o: $(HEADERS) Makefile

g++ -c -Wall $*.cpp

a.out: $(HEADERS) $(OBJS)

g++ -Wall $(OBJS)

clean:

rm -f *.o core a.out *.ppm *.gch

Algorithm .86: Makefile

178



www.manaraa.com

class Sphere : public Object {

protected:

double radius;

Point center;

Color color;

public:

Sphere (double, const Point &, const Color &);

virtual Color get_ambient (const Point &spot) const;

virtual bool get_intersect(const Point &sp, const Point &dp,

intersection &intersect);

};

Algorithm .87: Sphere class definition

// in Light.h

#include "Sphere.h"

class Light : public Sphere {

public:

Light (double, const Point &);

const Point & location () const { return center; }

};

// in Light.cpp

#include "Light.h"

Light::Light (double r, const Point &cen) :

Sphere (r, cen, Color (1,1,1)) {}

Algorithm .88: Light class definition

and shadows are calculated, at least initially, by sending rays from intersection points to light centers,

the Light class will provide a method for accessing its center point. See Algorithm .88.

3. Create an array of in the Scene class to hold all the lights in the scene. See Algorithm .89.

4. Update the destructor to clean up the lights array as well as the objects array.

5. Add lights to the scene light array. Algorithm .90 adds three lights.

6. Updatefirst visible to iterate through both the objects and the lights arrays.

7. Create a method to determine which lights are visible froma given point. Casting shadows amounts

to adding extra brightness for each visible light. A light isvisible from a given point if a ray from the

given point toward the center of the light does not intersectany other objects before reaching the light.

179



www.manaraa.com

// in Scene.h

class Scene {

private:

static const int WIDTH = 4;

static const int HEIGHT= 3;

const int NUM_OBJS;

const int NUM_LIGHTS;

Object **objects;

Light **lights;

˜Scene (void) {

for (int i=0; i < NUM_OBJS; ++i) {

delete objects[i];

}

delete [] objects;

for (int i=0; i < NUM_LIGHTS; ++i) {

delete lights[i];

}

delete [] lights;

}

Algorithm .89: Scene class definition

If one or more lights are blocked and thus not visible, their lighting effects are not added to that point,

causing a shadow.

The difficulty with creating this visible lights method is returningthe list of visible lights in an efficient

manner. A separate array of all visible lights can be generated each time the method is called. Alter-

natively the reference to the light array and an array of integers representing the light elements that are

visible could be returned. Another possibility is to write the method to behave in a manner similar to

the string tokenizer method: if a Point is provided, the method returns the first light visible from that

location. If a Point is not provided (i.e. isNULL), the method returns the next light visible from the last

point provided, orNULL if no more lights are visible. Any of these approaches may be used. In the

example code, notice that the Point is passed by pointer instead of reference. Pointer use is necessary,

because there is noNULL reference. Similarly, the return value is a pointer, because if there are no more

visible lights,NULLmust be returned. See Algorithm .91.

8. Update the Object class to have a method return the diffuse color value of the object. The diffuse

color value of an object is the color amount to add for each light visible to the given object. Typically,

as scenes become more sophisticated with more light objects, diffuse lighting will take on a more

180



www.manaraa.com

Scene::Scene (void) : NUM_OBJS(4), NUM_LIGHTS(3) {

int i=0;

objects = new Object* [NUM_OBJS];

objects[i++] = new Floor (-2, Color (1.0, 235.0/255.0, 205.0/255.0),

Color (139.0/255.0, 69.0/255.0, 19.0/255.0));

objects[i++] = new Sphere (.75, Point (1.4, -1.25, -1.5),

Color (139.0/255.0, 0.0, 0.0));

objects[i++] = new Sphere (.75, Point (-1.5, -.25, -2.25),

Color (0.0, 1.0, 1.0));

objects[i++] = new Sky (.4, .5, 1.0);

i=0;

lights = new Light* [NUM_LIGHTS];

lights[i++] = new Light (.25, Point (-1.5, 2.5, 0.5));

lights[i++] = new Light (.25, Point ( 1.5, 2.5, 0.5));

lights[i++] = new Light (.25, Point ( 0.0, 3.5, 0.5));

}

intersection Scene::first_visible (const Point &sp,

const Point &dp) const {

static intersection curr = {NULL, Point::MAX+1, Point()};

static intersection closest (curr);

closest.t = Point::MAX+1;

for(int i=0; i < NUM_OBJS; ++i) {

if (objects[i]->get_intersect(sp, dp, curr) && curr.t < closest.t)

{

closest = curr;

}

}

for(int i=0; i < NUM_LIGHTS; ++i) {

if (lights[i]->get_intersect(sp, dp, curr) && curr.t < closest.t)

{

closest = curr;

}

}

return closest;

}

Algorithm .90: Addition of Lights to the Scene

181



www.manaraa.com

const Light * Scene::next_light_visible (const Point *pt) const {

static Point cur_pt (0,0,0);

static int i=0;

intersection first;

if (pt != NULL) {

cur_pt = *pt;

i=0;

}

while (i < NUM_LIGHTS) {

first = first_visible (cur_pt, lights[i]->location());

if (first.obj == lights[i++]) {

return (Light *)first.obj;

}

}

return NULL;

}

Algorithm .91: Method to iteratively return the next light visible from a given point

virtual Color get_diffuse (const Point &spot) const = 0;

Algorithm .92: Addition of a diffuse color method in the Object class

prominent role and ambient lighting a less important one. For now, the diffuse color value for the

objects can be the same as the ambient values. As students become more creative and wish to exert

more control over the raytracer, they can modify the ambientand diffuse values of each object. See

Algorithm .92.

9. Update the Sphere class, Floor class, Sky class, and Lightclass to override theget diffusemethod.

Sky and Light should not react at all to lighting effects and should merely return black. For now, Sphere

and Floor can just return the ambient values. See Algorithm .93.

10. Update the Object class to have a method specifying whether an object responds to lighting effects. By

default, an object does respond to lighting. Update Sky and Light to override theallows lighting

method to return false, since neither reacts to diffuse (or specular) lighting. See Algorithm .94.

11. Update the Color class to allow channel-by-channel addition of Color objects. This addition will be

used to add diffuse color onto ambient color. Since the diffuse value will be added onto the ambient

value, the Color class should overload the+= operator. This operator adds the values passed in to the

local values. In overloading any operator, it is best to comply to the standard use of that operator.

182



www.manaraa.com

// in Sphere.h

virtual Color get_diffuse (const Point &spot) const {

return get_ambient (spot);

}

// in Floor.h

virtual Color get_diffuse (const Point &spot) const {

return get_ambient (spot);

}

// in Sky.h

virtual Color get_diffuse (const Point &spot) const {

return Color (0,0,0);

}

// in Light.h

virtual Color get_diffuse (const Point &) const {

return Color (0,0,0);

}

Algorithm .93: Creation of diffuse color methods in child classes

// in Object.h

virtual bool allows_lighting (void) const { return true; }

// in Sky.h

virtual bool allows_lighting (void) const { return false; }

// in Light.h

virtual bool allows_lighting (void) const { return false; }

Algorithm .94: Addition of boolean method specifying whether lighting affects this object

183



www.manaraa.com

// in Color.h

const Color &operator+= (const Color &);

// in Color.cpp

const Color &Color::operator+= (const Color &color) {

for (int i=RED; i <= BLUE; ++i) {

(*this)[i] += color[i];

}

return *this;

}

Algorithm .95: Color add-to operator overloading

Color Raytracer::trace_pixel (const Point &sp, const Point &dp) const {

intersection intersect = scene.first_visible (sp, dp);

Color pixel = intersect.obj->get_ambient (intersect.spot);

if (intersect.obj->allows_lighting()) {

const Light *light = scene.next_light_visible(&intersect.spot);

while (light) {

pixel += intersect.obj->get_diffuse(intersect.spot);

light = scene.next_light_visible (NULL);

}

}

return pixel;

}

Algorithm .96: Addition of diffuse lighting to color computation

For example, C++ allows the following expression:a = (b += c);. Therefore, the+= operator

should return a reference to the result of the addition. Similarly, since(a += b) = c; is not valid,

the reference returned by the+= operator must be constant. Finally, this method alters the state of the

object and cannot be declared constant. See Algorithm .95.

12. UpdateRaytracer::trace pixel to add diffuse lighting to the ambient value for each light that is

visible. Of course, lighting will be added only for objects that allow lighting. See Algorithm .96.

The resulting image will have shadows (Figure 32. The next step is to modify the diffuse lighting based

on the angle and distance to the center of the light.

184



www.manaraa.com

Figure 32: Shadows on a bright scene

B.6.11 Phase 9

The ninth phase is an OO program that creates an image of any specified size with a sky, any number

of spheres, a checkered floor, shadows, and diffuses light contribution based on light distance and surface

normal. The diffuse contribution is proportional to the cosine of the angle between at any surface point, the

surface normal at that point and a unit vector pointing toward the light source. The cosine of the angle to the

light will be obtained using the dot product method. Required knowledge: distance formula, normalizing a

vector, Sphere normal, and Lambert’s cosine law.

1. Create a distance method in the Point class. This method isnecessary for determining the distance to a

light from a given location. The method should return the distance from the point the method is called

to its parameter, also a point. The distance between two points is the Euclidean distance, given by

distance=
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (20)

Using the previously-overloadedoperator- anddot prod methods in the Point class, computing

distance is simple. See Algorithm .97.

185



www.manaraa.com

// in Point.h

double distance (const Point &pt) const;

Point operator/ (double divisor) const;

Point get_unit_vector (const Point &dp) const;

// in Point.cpp

double Point::distance (const Point &pt) const {

Point diff = *this - pt;

return sqrt (diff.dot_prod (diff));

}

Point Point::operator/ (double divisor) const {

return Point (x/divisor, y/divisor, z/divisor);

}

Point Point::get_unit_vector (const Point &dp) const {

double dist = distance (dp);

if (fabs(dist) < MIN) {

// if the distance is 0, return a 0-length vector

return Point (0, 0, 0);

} else {

Point diff = dp - *this;

return diff/dist;

}

}

Algorithm .97: Point distance, division and unit vector

186



www.manaraa.com

bool Sky::get_intersect(const Point &sp, const Point &dp,

intersection &intersect) {

intersect.t = Point::MAX;

intersect.spot = sp.get_unit_vector(dp);

intersect.obj = this;

return true;

}

Algorithm .98: Definition of Sky intersection

2. Create a method in the Point class for normalizing a vector. A normalized vector is a vector whose

length is one, also known as a unit vector. This normalizing method will be used to assist in computa-

tion of the angle to the light. You may recall that

X · Y = |X||Y|cosθ (21)

whereθ is the angle between vectorsX andY. If vectorsX andY are normalized (i.e. unit vectors), the

dot product produces simplycosθ.

The unit vector of a given vector can be computed using the following formula: unit = vector
|vector| If

“distance” is the distance from the starting point to the direction point, the unit vector is computed as

follows:

unitx =
dpx−spx

distance

unity =
dpy−spy

distance

unitz =
dpz−spz

distance

(22)

Since normalization is dependent upon division of the components by a scalar, it is a good idea to

first define a division method by overloadingoperator/. With Point subtract and division available,

normalizing is simple. One error condition to handle is the possibility that the distance between the

points is zero (or close to it).

3. Update theSky::get intersect to compute the intersection point as the normalized vector from

the starting point to the direction point. Until now, the sky’s intersection point has been simply the

direction point. However, the blueness of the sky is based onits angle. Now that vector normalization

is available, this issue can be corrected. See Algorithm .98.

4. Update the object classes to return the surface normal vector at a given point for the object. The

187



www.manaraa.com

Figure 33: Angle to the light

virtual Point get_normal (const Point &) const = 0;

Algorithm .99: Purely virtual normal computation method in Object class

“normal” to a surface at a given point is a vector perpendicular to it. Normal vectors are often made

unit length and thus called “unit normals.” Unit surface normals are needed for the objects in order

to compute the diffuse contribution to lighting at each surface point. The surface normal and the unit

vector to the light provide the angle that determines the extent of the diffuse contribution. The dot

product of the normal and unit vector toward the light is the cosine of the angle between them. (Figure

33).

As usual, the Object class will not directly implement the method for computing the normal and will

be overridden by the inheriting classes. See Algorithm .99.

The normal for the floor is the easiest to compute since it willalways be straight up: (0, 1, 0). See

Algorithm .100.

Since the surface of the sphere is curved, every point on the sphere has a different surface normal.

188



www.manaraa.com

// Floor get_normal

virtual Point get_normal (const Point &) const {

static Point normal (0, 1, 0);

return normal;

}

// Sphere get_normal

virtual Point get_normal (const Point &pt) const {

return center.get_unit_vector (pt);

}

// Sky get_normal

virtual Point get_normal (const Point &pt) const {

return pt; // irrelevant

}

Algorithm .100: Normal computation

Color operator* (double mult) const {

return Color (red*mult, green*mult, blue*mult);

}

Algorithm .101: Color scaling method

Fortunately computation of the normal is very simple here too: a line drawn from the center of the

sphere through the given point is perpendicular to the surface at that point. Therefore, to compute the

unit normal at a given point for a sphere, simply subtract thecenter point from the intersection point.

The normals for Sky and Light are irrelevant, since diffuse lighting does not impact them. However,

since the method is purely virtual, it must be overridden in all child classes. Light does not need to

override it, since Sphere handles it for light. Since sky’s normal could be anything, returning merely

the passed in point will suffice.

5. Update the Color class to overload the multiplication operator. Since the brightness of the lighting

will be scaled by the distance and angle to the light, Colors will need to be scaled, component by

component, using multiplication with a double. See Algorithm .101.

6. UpdateRaytracer::trace pixel to diminish the contribution of each light based on its distance and

the cosine of the angle from the intersection point. (Lambert’s cosine law says that the total radiant

power observed from a “Lambertian” surface is directly proportional to the cosine of the angle between

the observer’s line of sight and the surface normal.) The cosine of the angle to the light will be obtained

using the dot product method, sinceX · Y = |X||Y|cosθ. If the object reacts to lighting, the first visible

189



www.manaraa.com

Color Raytracer::trace_pixel (const Point &sp, const Point &dp) const {

intersection intersect = scene.first_visible (sp, dp);

Color pixel = intersect.obj->get_ambient (intersect.spot);

if (intersect.obj->allows_lighting()) {

const Light *light = scene.next_light_visible(&intersect.spot);

Point unit_dir;

double dist, weight;

Object *obj = intersect.obj;

while (light) {

unit_dir = intersect.spot.get_unit_vector (light->location());

dist = intersect.spot.distance (light->location());

weight = obj->get_normal (intersect.spot).dot_prod(unit_dir);

weight /= dist;

pixel += obj->get_diffuse(intersect.spot) * weight;

light = scene.next_light_visible (NULL);

}

}

return pixel;

}

Algorithm .102: Raytracer’s pixel trace method

light in the scene should be located. The distance to each visible light is computed.

Once again, the dot product of the two unit vectors (the normal and the unit vector toward the light)

is the cosine of the angle. The resulting cosine is stored as “weight.” The cosine “weight” will now

be divided by the distance to the light, since a far light doesnot have the intensity of a close light.

Light intensity attenuates with the square of the distance,but for short distances found in raytraced

scenes, linear attenuation often provides better visual results. Finally, using the overloaded+ = and∗

operators, scale the diffuse value by the weight and add the result to the final pixel value.

The resulting image is shown in Figure 34.

B.6.12 Phase 10

The tenth phase is an OO program that creates an image of any specified size with a sky, any

number of spheres, a checkered floor, shadows, distance/angle dependent diffuse lighting contribution, and

overall light reduction attenuation with distances. Although the actual attenuation of light is not necessary, the

addition of a double tracking the distance light has traveled is necessary for specular lighting. (If you do not

wish to attenuate light, you could instead drastically reduce the ambient contribution.) Required knowledge:

190



www.manaraa.com

Figure 34: Lighting with diffuse component

nothing new.

1. Overload the division/assignment operator (/=) in the Color class to allow the channels of a color to

be divided by a scalar double. This division is necessary forattenuating the light value with distance.

Since the operator involves assignment, it is a mutator method and cannot be constant. Like previous

similar operators, it should return a result of the divisionthat cannot be modified. See Algorithm .103.

2. Light intensity will decrease with scaled distance. Create a constant float representing the scale factor

on distance. A suggested starting weight is.4, and each student can alter the value as appropriate. See

Algorithm .104.

3. Add a parameter toRaytracer::trace pixel specifying how far the light has traveled at the instant

the method is called. At this point, the traveled value is always the same (zero), becausetrace pixel

will be invoked only once for each pixel. However, with the later addition of specular lighting, which

requires recursion, the distance traveled will vary. See Algorithm .105.

4. Add to the “traveled” variable the distance traveled fromthe starting point to the current intersection

point. It is fine to update the variable for intersections with any object; however, only objects that

191



www.manaraa.com

// in Color.h

const Color &operator/= (double);

// in Color.cpp

const Color &Color::operator/= (double divisor) {

for (int i=RED; i <= BLUE; ++i) {

(*this)[i] /= divisor;

}

return *this;

}

Algorithm .103: Sphere class normal computation

// in Raytracer.h

private:

static const float DIST_WEIGHT=.4f;

Algorithm .104: Declaration of the weight that distance has in this Raytracer

// in Raytracer.cpp

Color Raytracer::trace_pixel (const Point &sp, const Point &dp,

double traveled) const {

Algorithm .105: Addition of a distance-traveled-so-far parameter

192



www.manaraa.com

intersection intersect = scene.first_visible (sp, dp);

Color pixel = intersect.obj->get_ambient (intersect.spot);

if (intersect.obj->allows_lighting()) {

const Light *light = scene.next_light_visible(&intersect.spot);

Point unit_dir;

double dist, weight;

Object *obj = intersect.obj;

traveled += sp.distance (intersect.spot);

while (light) {

unit_dir = intersect.spot.get_unit_vector (light->location());

dist = intersect.spot.distance (light->location());

weight = obj->get_normal (intersect.spot).dot_prod(unit_dir);

weight /= dist;

pixel += obj->get_diffuse(intersect.spot) * weight;

light = scene.next_light_visible (NULL);

}

pixel /= DIST_WEIGHT * traveled;

}

return pixel;

}

Algorithm .106: Raytracer::tracepixel update

respond to lighting will have their brightness reduced overdistances. That is, sky and lights will

always return the same brightness values. See Algorithm .106.

5. At the end ofRaytracer::trace pixel, divide the pixel by the scaled distance traveled.

6. Update theRaytracer::trace method to pass the distance the light has traveled (zero). Ifthe re-

sulting image is too dark, the distance traveled could be given a smaller initial value, say−1. See

Algorithm .107.

The resulting image should look more realistic. The scalingweight on the distance, the starting dis-

tance, the eye position, and the ambient and diffuse weights can all be adjusted to get more realistic

images. See Figure 35.

B.6.13 Phase 11

The eleventh phase is an OO program that creates an image of any specified size with a sky, any

number of spheres, a checkered floor, shadows, distance/angle dependent lighting contribution, overall light

193



www.manaraa.com

void Raytracer::trace (void) {

Point dir;

Color color;

for (int i=0; i < height; ++i) {

for (int j=0; j < width; ++j) {

dir = Scene::virtual_coord (i, j, height, width);

color = trace_pixel (eye, dir, 0.0);

color.to_byte_range ();

for (int k=RED; k <=BLUE; ++k) {

image[(i*width +j)*CHANNELS + k] = (unsigned char)color[k];

}

}

}

}

Algorithm .107: Addition of initial distance traveled argument to the pixeltrace invocation.

Figure 35: Light attenuation with distance

194



www.manaraa.com

// in Point.h

Point operator* (double mult) const;

const Point &operator-= (const Point &pt);

const Point &operator+= (const Point &pt);

// in Point.cpp

Point Point::operator* (double mult) const {

return Point (x*mult, y*mult, z*mult);

}

const Point &Point::operator-= (const Point &sub) {

for (int i=X; i <=Z; ++i) {

(*this)[i] -= sub[i];

}

return *this;

}

const Point &Point::operator+= (const Point &add) {

for (int i=X; i <=Z; ++i) {

(*this)[i] += add [i];

}

return *this;

}

Algorithm .108: Point arithmetic methods

attenuation with distance, and specular reflectivity. Reflectivity is produced in a raytracer by bouncing rays

off reflective objects and recursively tracing their paths. Required knowledge: bouncing a ray with the law of

reflection, recursion.

1. Update the Point class to overload the multiplication operator, subtraction/assignment operator, and the

addition/assignment operator to be used with bouncing rays. See Algorithm .108.

2. Update the Point class to have a method to reflect an incoming ray around the surface normal. The

angle of the incoming ray to the normal (angle of incidence) and the angle of the outgoing, reflected

ray (angle of reflection) are equal, with the normal bisecting them. To compute the angle of reflection,

use the reversed incoming ray,inreversed, and the normalN. Note thatre f lected· N = inreversed· N, as

desired.

re f lected= (2N × (inreversed· N)) − inreversed (23)

The bounce method assumes that the Point object on which it iscalled is the normalized, reversed

incoming ray. See Algorithm .109.

195



www.manaraa.com

Figure 36: Vector bounce illustration

// in Point.h

Point bounce (const Point &normal) const;

// in Point.cpp

Point Point::bounce (const Point &normal) const {

Point outgoing = normal * (2 * dot_prod (normal));

return outgoing -= *this;

}

Algorithm .109: Vector bounce function

196



www.manaraa.com

// in Object.h

class Object {

protected:

Color reflect;

public:

Object () : reflect (0.0,0.0,0.0) {}

Object (const Color &r) : reflect (r) {}

const Color &reflectivity () const { return reflect; }

// no change in Sky.cpp

// in Floor.cpp

Floor::Floor (double ht, const Color &c1, const Color &c2,

const Color &r) : Object (r), height (ht), color1(c1), color2(c2) {}

// in Sphere.cpp

Sphere::Sphere (double r, const Point &cen, const Color &col,

const Color &ref) :

Object (ref), radius (r), center (cen), color (col) {}

// in Light.cpp

Light::Light (double r, const Point &cen) :

Sphere (r, cen, Color (1,1,1), Color(0,0,0)) {}

Algorithm .110: Addition of reflectivity attributes to Scene Objects

3. Update the objects to have reflectivity components. The amount of reflectivity an object has is a value

in the range [0.0, 1.0] and represents the percentage of the object’s color that is based on reflectance.

The complement, 1− re f lectivity, is the amount of ambient/diffuse light that the object’s color is based

on. Each rgb channel can have a different reflectance weight. Since reflectance must be represented by

three doubles, the reflectivity for each object will be represented as a Color object. Reflectivity does

not need to depend on the location on the object, though it could. In there examples here, reflectivity

does not require the location of the intersection. The Object class can implement reflectivity for all

objects. Sky will rely on Object’s default constructor (andtherefore will not need to be altered), while

Floor, Sphere, and Light will use the other constructor for setting reflectivity to values other than 0.

See Algorithm .110.

4. Update the Scene objects to now have reflectivity. It is best that all objects have at least some reflec-

tivity, since most natural objects do. In the example, the red (Color (139.0/255.0, 0.0, 0.0))

sphere has extra red reflectivity, and the cyan sphere is completely reflective. See Algorithm .111.

197



www.manaraa.com

Scene::Scene (void) : NUM_OBJS(4), NUM_LIGHTS(3) {

int i=0;

objects = new Object* [NUM_OBJS];

objects[i++] = new Floor (-2, Color (1.0, 235.0/255.0, 205.0/255.0),

Color (139.0/255.0, 69.0/255.0, 19.0/255.0),

Color (.02, .02, .02));

objects[i++] = new Sphere (.75, Point (1.4, -1.25, -1.5),

Color (139.0/255.0, 0.0, 0.0),

Color (.6, .2, .2));

objects[i++] = new Sphere (.75, Point (-1.5, -.25, -2.25),

Color (0.0, 1.0, 1.0),

Color (1.0, 1.0, 1.0));

objects[i++] = new Sky (.4, .5, 1.0);

Algorithm .111: Definition of objects to have reflective components

5. Create aRaytracer::add diffusemethod to simplify the structure of the

Raytracer::trace pixelmethod. With all the work being done for each pixel, the

trace pixelmethod is getting long and complicated. See Algorithm .112.

6. Create aRaytracer::compute specularmethod to compute and return the reflected color at a given

point. The method of computing the specular/reflected value is torecursivelycalltrace pixel starting

at the intersection point toward the direction of the bounceangle. Therefore, the first step in computing

specular reflectivity is to compute the normal at the intersection point, as well as the unit vector from

the intersection toward the starting point. These unit vectors are needed for computing the reflection

vector. See Algorithm .113.

The outgoing unit direction vector will be used in the reflection trace with the intersection point used

as the starting point. Sincetrace pixel depends on a starting point and direction point (not a unit

direction vector), the starting point should be added to theunit direction vector in order to generate

a direction point. Thus the starting point will be the intersection point, and the direction point is the

bounced unit vector plus the intersection point.

7. Update the Color class to support the operations needed toadd in specular. The specular contribu-

tion will be weighted by the object’s reflectivity component. The diffuse/ambient contribution will be

weighted by the complement of the object’s reflectivity component, 1.0 − re f lectivity. Therefore, to

compute specular, the Raytracer needs the ability to multiply colors by colors (per-component multi-

plication) and to find the negative or complement of a color. See Algorithm .114.

198



www.manaraa.com

// in Raytracer.h

void add_diffuse (Color &, const intersection &) const;

// in Raytracer.cpp

void Raytracer::add_diffuse (Color &pixel,

const intersection &intersect) const {

const Light *light = scene.next_light_visible(&intersect.spot);

Point unit_dir;

double dist, weight;

Object *obj = intersect.obj;

while (light) {

unit_dir = intersect.spot.get_unit_vector (light->location());

dist = intersect.spot.distance (light->location());

weight = obj->get_normal (intersect.spot).dot_prod(unit_dir);

weight /= dist;

pixel += obj->get_diffuse(intersect.spot) * weight;

light = scene.next_light_visible (NULL);

}

}

Algorithm .112: Separation of diffuse color computation

Color Raytracer::compute_specular (const intersection &intersect,

const Point &sp, double traveled) const {

Point normal = intersect.obj->get_normal(intersect.spot);

Point incoming = intersect.spot.get_unit_vector (sp);

Point outgoing = incoming.bounce (normal);

outgoing += intersect.spot;

Color specular = trace_pixel (intersect.spot, outgoing, traveled);

return specular;

}

Algorithm .113: Computation of specular reflectivity

199



www.manaraa.com

// in Color.h

const Color &operator*= (const Color &);

Color complement () const {

return Color (1.0-red, 1.0-green, 1.0-blue);

}

// in Color.cpp

const Color &Color::operator*= (const Color &color) {

for (int i=RED; i <= BLUE; ++i) {

(*this)[i] *= color[i];

}

return *this;

}

Algorithm .114: Color scaling methods

8. Updatetrace pixel to halt tracing after the maximum distance has been traveled. Sincetrace pixel

will be called recursively, there must be a base case. The base case occurs when the light has trav-

eled past the maximum allowable distance,Point::MAX. If the passed-in distance traveled exceeds

Point::MAX, black is returned. See Algorithm .115.

9. Updatetrace pixel to appropriately invoke the new methods and include specular reflectivity.

The resulting image should have reflective spheres and a slightly reflective floor: Figure 37.

B.6.14 Phase 12

The twelfth phase is an OO program that creates an image of anyspecified size with a sky, any

number of spheres, a checkered floor, shadows, distance/angle dependent diffuse lighting contribution, overall

light distance attenuation, specular reflectivity, and anti-aliasing.Anti-aliasing is the technique of minimizing

the distortion artifacts known as aliasing when representing a high-resolution image at a lower resolution

The edges of the spheres, and the reflections in them have sharp, boxy edges that do not adequately represent

the appropriate round shapes. Anti-aliasing techniques will smooth the boxy, pixelated edges in the images.

The method of anti-aliasing used here is performing multiple traces for each pixel with pseudo-randomly

jittered direction points. These multiple jittered tracesare averaged to determine the final pixel value. The

result of using the average of multiple, jittered traces is ablended final pixel value that smoothes transitions

between colors in the image.

Covered knowledge: random number generation, a method of generating arbitrary direction points.

200



www.manaraa.com

// in Raytracer.cpp

Color Raytracer::trace_pixel (const Point &sp, const Point &dp,

double traveled) const {

static const Color BLACK;

if (traveled > Point::MAX) return BLACK;

intersection intersect = scene.first_visible (sp, dp);

Color pixel = intersect.obj->get_ambient (intersect.spot);

if (intersect.obj->allows_lighting()) {

add_diffuse (pixel, intersect);

traveled += sp.distance (intersect.spot);

pixel /= DIST_WEIGHT * traveled;

Color specular = compute_specular (intersect, sp, traveled);

specular *= intersect.obj->reflectivity();

pixel *= intersect.obj->reflectivity().complement();

pixel += specular;

}

return pixel;

}

Algorithm .115: Update of tracepixel

Figure 37: Scene with reflectivity

201



www.manaraa.com

// in Raytracer.h

private:

static double jitter (int base, int number);

// in Raytracer.cpp

double Raytracer::jitter (int base, int number) {

double radical_inverse = 0.0;

double digit_place = 1.0/base;

while (number > 0) {

radical_inverse += digit_place * (number%base);

number /= base;

digit_place *= 1.0/base;

}

return radical_inverse;

}

Algorithm .116: Pseudo-random jitter method

1. Create ajitter method to “randomly” generate values in the range [0.0, 1.0]. The pseudo-random

numbers will be generated using the Halton sequence. These pseudo-random numbers will assist in

generating jittered directions for the rays. Varying the direction points slightly will lower the aliasing

effects. The code for generating the Halton sequence may be provided verbatim to students, but the

algorithm is explained here for the instructor’s sake:

(a) Choose a prime base (passed-in). Typically a 2 or 3.

(b) Find the radical inverse of the provided number in the chosen base:

i. Convert the provided number to that base. (e.g. 4 in base 2=100)

ii. Reverse the bits of the number. (e.g. 100 becomes 001)

iii. Put a decimal in the front. (e.g. 001 becomes .001)

iv. Convert back to base 10. (e.g. .001 becomes 1/8)

The jitter method is not dependent in any way on the state of the raytracer and can therefore be static.

See Algorithm .116. This converts the given number, place-by-place, to the radical inverse by comput-

ing the remainder after division by the given base and addingit at the appropriate decimal place to the

final result.

Each time through the loop, the new digit place is calculated. e.g. if base is 2, the digit place is12, 1
4,

1
8, 1

16, etc.

202



www.manaraa.com

// in Raytracer.h

private:

static const int NUM_TRACES=8;

Color antialias_trace(const Point &,int,int,double) const;

// in Raytracer.cpp

Color Raytracer::antialias_trace (const Point &sp, int row,

int col, double traveled) const {

Point dir = Scene::virtual_coord (row, col, height, width);

Color colorSum = trace_pixel (sp, direction, traveled);

for (int i=1; i < NUM_TRACES; ++i) {

dir = Scene::virtual_coord((int)(row-.5+jitter(2,i)),

(int)(col-.5+jitter(3,i)), height, width);

colorSum += trace_pixel (sp, dir, traveled);

}

return colorSum /= NUM_TRACES;

}

Algorithm .117: Raytracer’s anti-aliasing trace

2. Create a constant representing how many traces to performper pixel in order to perform anti-aliasing. A

suggested number is 8, but during testing, students may wishto use smaller numbers to lower runtime.

See Algorithm .117.

3. Create a method to perform multiple traces for each pixel using jittered direction points. First perform

the normal trace.

Next perform theNUM TRACES-1more traces at jittered direction points. Both thex and they directions

are jittered in the range [-.5, .5] using bases of 2 and 3 and the current value of the loop counter.

4. Update theRaytracer::tracemethod to callantialias trace instead oftrace pixel. See Al-

gorithm .118. The resulting program will be approximatelyNUM TRACES slower than before. However

the aliasing effects will be greatly reduced. See Figure 38.

B.6.15 Phase 13

The thirteenth phase is an OO program that creates an image ofany specified size with a sky, any

number of spheres,any number of boxes, a checkered floor, shadows, distance/angle dependent diffuse light-

ing contribution, overall light attenuation with distance, specular reflectivity, and anti-aliasing. Boxes in this

raytraces are defined as 3D cubes whose sides are aligned withthex, y, and z axis. Thus, a box is defined by

merely twox, y, zcoordinates: a minimum xyz value designating the left, lower, far corner, and the maximum

203



www.manaraa.com

void Raytracer::trace (void) {

Color color;

for (int i=0; i < height; ++i) {

for (int j=0; j < width; ++j) {

color = antialias_trace (eye, i, j, 0.0);

color.to_byte_range ();

for (int k=RED; k <=BLUE; ++k) {

image[(i*width +j)*CHANNELS + k] = (unsigned char)color[k];

}

}

}

}

Algorithm .118: Invocation of anti-aliasing trace from Raytracer loop

Figure 38: Anti-aliased image

204



www.manaraa.com

#include <math.h>

#include "Object.h"

class Box : public Object {

private:

Point left_low_far;

Point right_high_near;

Color color;

static bool is_equal (double d1, double d2) {

return (fabs (d1-d2) < Point::MIN);

}

static void swap (double &d1, double &d2) {

static double temp;

temp = d1;

d1 = d2;

d2 = temp;

}

public:

Box (const Point &, const Point &, const Color &, const Color &);

virtual Color get_ambient (const Point &) const;

virtual Color get_diffuse (const Point &spot) const {

return get_ambient (spot);

}

virtual bool get_intersect(const Point &sp, const Point &dp,

intersection &intersect);

virtual Point get_normal (const Point &) const;

};

Algorithm .119: Box class definition

xyz value designating the right, upper, near corner. Required knowledge: ray-box intersection, comparison

of doubles.

1. Create theBox.h header. The Box class is very similar to other object classesbut it has two Points

defining its location: a point on the left, lower, far corner,and a point on the right, upper, near corner.

See Algorithm .119. In order to simplify the box intersection later, create a private, staticis equal

method to determine whether two doubles are approximately equal, and create a private, static swap

method for swapping two doubles.

2. Implement the simple parts of the Box class inBox.cpp. See Algorithm .120.

3. Implement the Box intersection method. The ray/box intersection method tests for intersection of the

ray with all 6 planes defining the box: left (minx plane), right (maxx plane), bottom (miny plane), top

205



www.manaraa.com

#include "Box.h"

Box::Box(const Point &min, const Point &max, const Color &c,

const Color &r) : Object (r), left_low_far(min),

right_high_near(max), color(c){}

Color Box::get_ambient (const Point &spot) const {

return color;

}

Algorithm .120: Box constructor and ambient color methods

(a) Intersection (b) Failure to intersect

Figure 39: Intersection tests

(maxy plane), back (minz plane), and front (maxz plane). The order in which the ray intersects these

planes determines whether a ray intersects the box described by the planes.A ray intersects a box iff

the three planes of the box closest to the ray are intersectedbefore the three planes of the box furthest

from the rayTherefore, if the ray intersects any of the far planes at distances less than any of the near

planes, the ray does not intersect the box. The images demonstrating box intersection here use onlyx

andy planes for simplicity. See Figure 39.

If the ray is parallel to an axis, say axisc(= x, y, z), then the start point and direction point for the ray

have equalc components. If this common value of thec component is less than minc plane or greater

than the maxc plane, the ray misses the box.

Since intersection occurs when all of the near sides are intersected before all of the far sides, the key

206



www.manaraa.com

bool Box::get_intersect(const Point &sp, const Point &dp,

intersection &intersect) {

double tnear = -Point::MAX;

double tfar = Point::MAX;

double t1, t2;

for (int i=X; i <= Z; ++i) {

if (is_equal(sp[i], dp[i])) {

if (sp[i]<left_low_far[i] || sp[i]>right_high_near[i]){

return false;

}

} else {

t1 = (left_low_far[i] - sp[i]) / (dp[i] - sp[i]);

t2 = (right_high_near[i] - sp[i]) / (dp[i] - sp[i]);

if (t1 > t2) swap (t1, t2);

if (t1 > tnear) { tnear = t1; }

if (t2 < tfar) { tfar = t2; }

if (tnear > tfar || tfar < 0.0) return false;

}

}

if (tnear < Point::MIN) return false;

intersect.spot = sp * (1-tnear);

intersect.spot += dp * tnear;

intersect.t = tnear;

intersect.obj = this;

return true;

}

Algorithm .121: Initialization of Box intersection computation variables

values to locate are the furthest intersection with a near plane and the closest intersection with a far

plane. To accommodate this search, variablestnear andtfar will be initialized to extremely high

and extremely low values, respectively. Then, the intersection of the ray within the two planes for each

component will be calculated and used to updatetnear andtfar. Since each component has two

planes to test, there are two t variables to store the distances along the ray to the points of intersection.

See Algorithm .121.

Equality of start point and direction point components mustbe tested to determine whether the ray is

parallel to an axis. If they are equal and if the starting point’s component is outside of the range of the

left low far point andright high near point, there is no intersection.

If starting point’s corresponding component is not out of the range, testing on this component is com-

plete. However, if the starting point component and direction point component are not equal, we must

207



www.manaraa.com

Point Box::get_normal (const Point &spot) const {

Point normal (0,0,0);

for (int i=X; i <=Z; ++i) {

if (is_equal (spot[i], left_low_far[i])) {

normal[i] = -1;

return normal;

}

}

for (int i=X; i <=Z; ++i) {

if (is_equal (spot[i], right_high_near[i])) {

normal[i] = 1;

return normal;

}

}

return normal;

}

Algorithm .122: Box class normal computation

calculate the distance along the ray to intersection with the two planes, using the same formula for

calculating thet value used with floor intersection.

Once the two distances for this axis have been calculated, the closer distance must be stored int1

with the farther int2. Now that the distances to the two planes have been calculated,tnear andtfar

must be updated to hold the furthest near plane and the closest far plane, respectively. Once again, this

calculation is to confirm that all intersections with near planes of the box occur before all intersections

with far planes of the box. Otherwise, the ray misses the box.

If the loop through thex, y, andz components completes andtfar >= 0.0, then the plane intersec-

tions occurred in proper order (near planes before far) and the ray does indeed intersect the box.

Next, the intersection point with the nearest plane should be calculated using thetnear value and the

information in the intersection structure variable shouldbe updated.

4. Implement the Boxget normalmethod. Since the box is aligned with thex, y, andzaxes, the normals

are relatively simple: if the intersection was with the leftside, the normal is (-1, 0, 0); for the right, (1,

0, 0); for the bottom, (0, -1, 0); for the top, (0, 1, 0); for theback, (0, 0, -1), for the front, (0, 0, 1). The

normals for boxes are thus determined by which plane is hit, and so they can be computed in a loop.

See Algorithm .122.

5. Add box objects to the scene (Algorithm .123.

208



www.manaraa.com

3Scene::Scene (void) : NUM_OBJS(6), NUM_LIGHTS(3) {

int i=0;

objects = new Object* [NUM_OBJS];

objects[i++]=new Floor(-2,Color(1.0,235.0/255.0, 205.0/255.0),

Color (139.0/255.0,69.0/255.0, 19.0/255.0),

Color (.02, .02, .02));

objects[i++]=new Sphere (.75, Point (1.4, -1.25, -1.5),

Color (139.0/255.0, 0.0, 0.0),

Color (.6, .2, .2));

objects[i++]=new Sphere (.75, Point (-1.5, -.25, -2.25),

Color (0.0, 1.0, 1.0),

Color (1.0, 1.0, 1.0));

objects[i++]=new Sky (.4, .5, 1.0);

objects[i++]=new Box(Point(-3, -2, -4.5), Point (3, -0.5, -3),

Color (0, 1, 1), Color (.01, .01, .01));

objects[i++]=new Box(Point (-2, -2, -3.0), Point (-1, -1, -1),

Color (0, 1, 1), Color (.01, .01, .01));

Algorithm .123: Addition of boxes to the scene

The resulting image should have two boxes: Figure 40.

B.6.16 Phase 14

The fourteenth phase changes the storage of the objects in the scene to be a linked list. The purpose

for this data structure alteration is support for the next phase, in which the objects in the scene are read from

a file. Required knowledge: linked lists, iteration.

1. Create a linked list Node class that contains Objects. As is the case with most linked list nodes, this

class will contain a pointer to the Object and a pointer to thenext node. Additionally, the node class

has constructors, a destructor, and anadd aftermethod for inserting a passed-in node after this node.

This example implementation has the node class be a private,inner class of the Object linked list class.

See Algorithm .124.

If this node has any nodes after it, theadd after method is a little tricky, especially if the passed in

node is actually the first in a list of nodes. The passed-in node(s) should be inserted between this node

and its next. Thus, if this node has a node after it, 1) find the last node in the passed-in list, 2) update

the next of that last node (in the passed-in list) to point to this node’s next, and 3) change this node’s

next to be the node passed in. See Algorithm .125.

2. Create an iterator class for stepping through the nodes inthe linked list. Of course, this class is not

209



www.manaraa.com

// in ObjList.h

#include "Object.h"

#include "Light.h"

#include <stdlib.h>

class ObjList {

private:

class Node {

public:

Object *object;

Node *next;

Node (Object *object);

Node (Object *object, Node *next);

˜Node () {

delete object;

}

void add_after (Node *new_node);

};

// in ObjList.cpp

ObjList::Node::Node (Object *obj) {

this->object = obj;

next = NULL;

}

ObjList::Node::Node (Object *obj, Node *next) {

this->object = obj;

this->next = next;

}

Algorithm .124: Linked list node class

void ObjList::Node::add_after (Node *new_node) {

// have the new node’s next point to what this’s next previously held

.

if (this->next != NULL) {

Node *current = new_node;

while (current->next != NULL) current = current->next;

current->next = this->next;

}

this->next = new_node;

}

Algorithm .125: Linked list node add after method

210



www.manaraa.com

Figure 40: Scene with boxes

necessary, but it introduces iterators and also results in simpler code. The iterator should hold the node

that will be returned next, and should provide operations toaccess the Object in that node, determine

if there are any more objects, and move to the next object. Twooperators typically overloaded for an

iterator areoperator* andoperator++. The dereferencing operator is used to obtain the object in

the current node, and the increment operator moves on to the next node in the list. This class can be an

inner class of the Object linked list, but it must be public. See Algorithm .126.

The iterator begins with the node passed in and completes when the current node is NULL. See Algo-

rithm .127.

Since “current” always holds the next node to be returned, the next method must move to the next

node and then return the one before it. See Algorithm .128.

Dereferencing the iterator returns the object and the current node, and incrementing the iterator moves

the current to the next node. See Algorithm .129.

3. Create the Object linked list based on the node and iterator classes. Since this linked list is custom

built, it may have features that would not be available otherwise. Specifically, special handling for

lights. When the raytracer iterates through objects to locate the first object intersected by a ray, all

211



www.manaraa.com

// in ObjList.h

public:

class ObjectIter {

private:

Node *current;

public:

ObjectIter (Node *start);

bool has_next(void) const;

Object *next(void);

Object *operator*(void) const;

const ObjectIter &operator++ (void);

};

Algorithm .126: Linked list iterator class

// in ObjList.cpp

ObjList::ObjectIter::ObjectIter (Node *start) {

current = start;

}

bool ObjList::ObjectIter::has_next(void) const {

return current != NULL;

}

Algorithm .127: Linked list iterator methods

Object *ObjList::ObjectIter::next() {

Node *toReturn = current;

current = current->next;

return toReturn->object;

}

Algorithm .128: Iterator method for getting the next Object

Object *ObjList::ObjectIter::operator*(void) const {

return current->object;

}

const ObjList::ObjectIter &ObjList::ObjectIter::operator++(void){

next();

return *this;

}

Algorithm .129: Iterator dereferencing and incrementing

212



www.manaraa.com

// in ObjList.h

#include "Object.h"

#include "Light.h"

#include <stdlib.h>

class ObjList {

private:

class Node { /* . . . see above code . . . */ };

Node *head, *tail, *first_light;

public:

class ObjectIter { /* . . . see above code . . . */ };

ObjList (void);

Algorithm .130: Beginning of Linked list code

˜ObjList (void) {

Node *current = head, *prev;

while (current) {

prev = current;

current = current->next;

delete prev;

}

}

void add (Light *object);

void add (Object *object);

ObjectIter iterator (void) const;

ObjectIter light_iterator (void) const;

};

Algorithm .131: Remainder of linked list class

objects and lights should be included. However, when the raytracer is determining how many lights

are visible at a given spot, it should iterate only through the lights. Therefore, the example version of

the linked list has lights always added to the tail of the listand other objects added to the head. In this

manner, a list of all objects or a list of only lights is available within the same linked list. Thus, the

linked list will have a pointer to head, tail, and the first light. See Algorithm .130.

The destructor for a linked list must delete all memory used for each node. See Algorithm .131.

The linked list can return an object iterator or a light iterator. See Algorithm .132.

4. Modify the Scene constructor to use the object linked list. The instance variables of the Scene must

be changed as well to use the linked list instead of an array. Using a linked list removes the need for

213



www.manaraa.com

// in ObjList.cpp

#include "ObjList.h"

ObjList::ObjList () : head(NULL), tail(NULL), first_light(NULL){}

// Lights are appended to the tail

void ObjList::add (Light *obj) {

Node *new_node = new Node (obj);

if (head == NULL) {

head = tail = new_node;

} else {

tail->add_after (new_node);

tail = tail->next;

}

if (first_light == NULL) first_light = new_node;

}

// All other objects are added at the head

void ObjList::add (Object *obj) {

Node *new_node = new Node (obj);

if (head == NULL) {

head = tail = new_node;

} else {

new_node->add_after (head);

head = new_node;

}

}

ObjList::ObjectIter ObjList::iterator () const {

return ObjList::ObjectIter (head);

}

ObjList::ObjectIter ObjList::light_iterator () const {

return ObjList::ObjectIter (first_light);

}

Algorithm .132: Creation of linked list functions

214



www.manaraa.com

// in Scene.h

class Scene {

private:

ObjList objects;

// in Scene.cpp

Scene::Scene (void) {

objects.add(new Floor(-2,Color (1.0,235.0/255.0,205.0/255.0),

Color (139.0/255.0, 69.0/255.0, 19.0/255.0),

Color (.02, .02, .02)));

objects.add (new Sphere (.75, Point (1.4, -1.25, -1.5),

Color (139.0/255.0, 0.0, 0.0),

Color (.6, .2, .2)));

objects.add (new Sphere (.75, Point (-1.5, -.25, -2.25),

Color (0.0, 1.0, 1.0),

Color (1.0, 1.0, 1.0)));

objects.add (new Sky (.4, .5, 1.0));

objects.add(new Box(Point(-3.0,-2.0,-4.5),Point(3.0,-0.5,-3.0)

, Color (0, 1, 1), Color (.01, .01, .01)));

objects.add(new Box(Point(-2.0,-2.0,-3.0),Point(-1.0,-1.0,-1.0),

Color (0, 1, 1), Color (.01, .01, .01)));

objects.add (new Light (.25, Point (-1.5, 2.5, 0.5)));

objects.add (new Light (.25, Point ( 1.5, 2.5, 0.5)));

objects.add (new Light (.25, Point ( 0.0, 3.5, 0.5)));

}

Algorithm .133: Scene objects in a linked list

variables for indicating how many lights and objects the scene has. See Algorithm .133.

5. Modify Scene::first visible to use the linked list. The address of the object in the current node

is needed during iteration through the elements, and may be obtained by dereferencing the iterator.

Calling any methods on the object obtained by iteration dereferencing must be done by dereferencing

the object. See Algorithm .134.

6. UpdateScene::next light visible to use the light iterator, as in Algorithm .135.

If the use of the linked list, iterator, or operator overloading is seems too complex for students, they

could instead learn about linked lists in lab and use the standard template library list.

215



www.manaraa.com

intersection Scene::first_visible(const Point &sp,

const Point &dp) const {

static intersection curr = {NULL, Point::MAX+1, Point()};

static intersection closest (curr);

ObjList::ObjectIter iter = objects.iterator();

closest.t = Point::MAX+1;

for (;iter.has_next(); ++iter) {

if ((*iter)->get_intersect (sp, dp, curr) &&

cur.t < closest.t) {

closest = curr;

}

}

return closest;

}

Algorithm .134: First intersection method with a linked list

const Light * Scene::next_light_visible (const Point *pt) const {

static Point cur_pt (0,0,0);

static ObjList::ObjectIter iter(NULL);

intersection first;

if (pt != NULL) {

cur_pt = *pt;

iter = objects.light_iterator();

}

while (iter.has_next()) {

first = first_visible (cur_pt, ((Light*)*iter)->location());

if (first.obj == *iter) {

++iter;

return (Light *)first.obj;

}

++iter;

}

return NULL;

}

Algorithm .135: Next light method with a linked list

216



www.manaraa.com

B.6.17 Phase 15

In the fifteenth phase, the scene to raytrace is read in from a file. Optionally, students can use the

input operatoroperator>> to read in information. Required knowledge: file IO, (friendfunctions and the

input operator).

1. Create a file specifying the scene to trace. As usual, the example will be the same scene used through-

out. The format of the file should be one that is easy to understand and simple to read. The sample

file specifies the object to be read and then lists each attribute (in any order) and its value. Spacing is

unimportant. See Algorithm .136.

2. Update the Point class to overload the input operator. As information is read from the scene file,

attributes will be read in using the input operator. e.g.in >> radius; will read in the next

double and store it in radius. Therefore, object reading maybe simplified by overloading the input

operator for the Point class to allow similar notation:in >> center;. Again, this feature is optional.

Alternatively, a “set” method may accept the file reader object and read in the values. (The C++ file

reading class isstd::ifstream).

The tricky part about overloading the input (or output) operator is that the first object to the operator

is the ifstream object and not the Point object. Therefore, if one overloaded the input operator as

a member function (std::ifstream &Point::operator>>(std::ifstream &);), the resulting

notation would be backward:center >> in;. Instead, the input operator must be overloadedoutside

of the Point class and accept two parameters: the ifstream object and the Point object. Unfortunately,

if the operator method is outside of the class, it cannot access Point’s private members. Therefore,an

overloaded input or output operator must be a friend function to the class for which the operator is

being overridden

Once the notation is covered, overloading the input operator for the Point class is simple. Since

ifstream objects can already read doubles, specifying how to read thethree components is all that is

necessary. See Algorithm .137.

3. Similarly, and for the same reasons, overload the input operator for the Color class. See Algorithm

.138.

4. Create a constructor for Sphere that accepts an ifstream object from which to read in the object data.

Since the attributes for Sphere can be in any order, a loop should be used to read in the four of them.

217



www.manaraa.com

Sky

horizon .4

base .5

blue 1.0

Sphere

center 1.4 -1.25 -1.5

radius .75

color .545 0 0

reflect .6 .2 .2

Sphere

center -1.5 -.25 -2.25

radius .75

color 0 0 0

reflect 1 1 1

Floor

height -2

color1 .545 .27 .0745

color2 1 .92 .8

reflect .02 .02 .02

Box

min -3 -2 -4.5

max 3 -.5 -3.0

color 0 1 1

reflect .01 .01 .01

Box

min -2 -2 -3

max -1 -1 -1

color 0 1 1

reflect .01 .01 .01

Light

center -1.5 2.5 .5

radius .25

Light

center 1.5 2.5 .5

radius .25

Light

center 0 3.5 .5

radius .25

Algorithm .136: Scene specification file

218



www.manaraa.com

// in Point.h

class Point {

/* . . . */

friend std::ifstream &operator>> (std::ifstream &in,

Point &pt) {

in >> pt.x >> pt.y >> pt.z;

return in;

}

/* . . . */

};

Algorithm .137: friend function for reading in a Point

// in Color.h

class Color {

/* . . . */

friend std::ifstream &operator>> (std::ifstream &in,

Color &c) {

in >> c.red >> c.green >> c.blue;

return in;

}

/* . . . */

};

Algorithm .138: Friend function for reading in a color

219



www.manaraa.com

// in Sphere.h

Sphere (std::ifstream &);

// in Sphere.cpp

Sphere::Sphere (std::ifstream &in) {

std::string attribute;

for (int i=0; i < 4; ++i) {

in >> attribute;

if (attribute == "center") {

in >> center;

} else if (attribute == "radius") {

in >> radius;

} else if (attribute == "color") {

in >> color;

} else if (attribute == "reflect") {

in >> reflect;

}

}

}

Algorithm .139: Sphere constructor for reading a sphere

The first input is the string name of the next attribute. That string may be matched to one of Sphere’s

attributes and read in using the input operator. See Algorithm .139.

5. Similarly create constructors in Box, Floor, and Sky to read in their own attributes. See Algorithm

.140, .141, and .142.

6. Update Light similarly to the others. There is one minor difference with the Light class. Since the

Light class inherits from the Sphere class, the Sphere classconstructor is called for the object before

the Light constructor. Since the values for Light are read inthe Light’s constructor, they cannot be

provided to the Sphere constructor at the time of invocation. Thus, the Sphere class must now provide

a default constructor. See Algorithm .143.

7. Update the Scene constructor to accept a character array string specifying the input file name. Using

the specified filename, create a file reader object (std::ifstream). Additionally, declare a method

for reading in the objects. See Algorithm .144.

8. CreateScene::read objects. Object reading is dependent upon each object’s ability to read itself

in. As long as the reader is not at the end of the file, it will read the name of the next object and call

that object’s constructor. See Algorithm .145.

220



www.manaraa.com

// in Box.h

Box (std::ifstream &in);

// in Box.cpp

Box::Box (std::ifstream &in) {

std::string attribute;

for (int i=0; i < 4; ++i) {

in >> attribute;

if (attribute == "min") {

in >> left_low_far;

} else if (attribute == "max") {

in >> right_high_near;

} else if (attribute == "color") {

in >> color;

} else if (attribute == "reflect") {

in >> reflect;

}

}

}

Algorithm .140: Box input constructor

// in Floor.h

Floor (std::ifstream &in);

// in Floor.cpp

Floor::Floor (std::ifstream &in) {

std::string attribute;

for (int i=0; i < 4; ++i) {

in >> attribute;

if (attribute == "height") {

in >> height;

} else if (attribute == "color1") {

in >> color1;

} else if (attribute == "color2") {

in >> color2;

} else if (attribute == "reflect") {

in >> reflect;

}

}

}

Algorithm .141: Floor input constructor

221



www.manaraa.com

// in Sky.h

Sky (std::ifstream &in);

// in Sky.cpp

Sky::Sky (std::ifstream &in) {

std::string attribute;

for (int i=0; i < 3; ++i) {

in >> attribute;

if (attribute == "horizon") {

in >> horizon;

} else if (attribute == "base") {

in >> base;

} else if (attribute == "blue") {

in >> blue;

}

}

}

Algorithm .142: Sky input constructor

// in Sphere.h

class Sphere : public Object {

public:

Sphere () : Object () {}

// in Light.h

Light (std::ifstream &in);

// in Light.cpp

Light::Light (std::ifstream &in) {

std::string attribute;

reflect.red = reflect.green = reflect.blue = 0.0;

color.red = color.green = color.blue = 1.0;

for (int i=0; i < 2; ++i) {

in >> attribute;

if (attribute == "center") {

in >> center;

} else if (attribute == "radius") {

in >> radius;

}

}

}

Algorithm .143: Light constructor for reading input

222



www.manaraa.com

// in Scene.h

class Scene {

private:

static const int WIDTH = 4;

static const int HEIGHT= 3;

ObjList objects;

void read_objects (std::ifstream &);

public:

Scene (char *);

// in Scene.cpp

Scene::Scene (char *file) {

std::ifstream in (file, std::ios::in);

read_objects (in);

}

Algorithm .144: Added object reading method

void Scene::read_objects (std::ifstream &in) {

std::string type;

in >> type;

while (!in.eof()) {

if (type == "Sphere") {

objects.add (new Sphere (in));

} else if (type == "Light") {

objects.add (new Light (in));

} else if (type == "Box") {

objects.add (new Box (in));

} else if (type == "Floor") {

objects.add (new Floor (in));

} else if (type == "Sky") {

objects.add (new Sky (in));

}

in >> type;

}

}

Algorithm .145: Scene object reading

223



www.manaraa.com

// in Raytracer.h

class Raytracer {

public:

Raytracer(char *,int w=DEFAULT_WIDTH ,int h=DEFAULT_HEIGHT);

// in Raytracer.cpp

Raytracer::Raytracer (char *name, int w, int h) : width (w),

height(h), eye (0.0, 1.5, 4.0), scene(name) {

image = new unsigned char [width*height*CHANNELS];

}

Algorithm .146: Raytracer scene name parameter

int main (int argc, char **argv) {

Raytracer *tracer;

if (argc > 3) {

tracer=new Raytracer(argv[1],atoi(argv[2]),atoi(argv[3]));

} else if (argc > 1) {

tracer = new Raytracer (argv[1]);

} else {

std::cerr << "Usage: " << argv[0]

<< " input file [width height]" << std::endl;

return EXIT_FAILURE;

}

tracer->create_image ();

delete tracer;

}

Algorithm .147: Main function that accepts an input file

9. Update the Raytracer constructor to accept a character array specifying the filename. See Algorithm

.146.

10. Update the main function to require the filename of the scene to raytrace. If the user does not provide

a filename, print an error message. See Algorithm .147. The above described raytracer should now be

able to read in scenes from an input file.

224



www.manaraa.com

Appendix C Algorithms and Data Structures Course Guide

C.1 Credits

4 (3 hour lecture and 2 hour lab)

C.2 Prerequisites

CPSC 102 or 210 with a C or better.

C.3 Course Goals

This course covers the following computer science knowledge and skills:

• Abstract data types.

• Fundamental data structures (lists, trees, heaps).

• Fundamental algorithms (searching, sorting, tree balancing, etc.).

• Ability to measure program running time and time complexity.

• Algorithm analysis and design techniques.

C.4 Course Description

Algorithms and Data Structures is based on the implementation of photon mapping: an augmentation

to a raytracer that supports global illumination with diffuse color bleeding, caustics, and participating media.

NOTE:As of this writing, this course has been designed but not yet taught. This guide will undoubtedly

require modifications after the first attempt to teach the course, which is scheduled for Fall, 2007.

C.5 Resources

Likely the best resource for implementing and teaching photon mapping is the guide provided by

Henrik Wann Jensen:A practical guide to global illumination using raytracing and photon mapping, in

ACM SIGGRAPH 2004 Course Notes (Los Angeles, CA, August 08 - 12, 2004), SIGGRAPH ’04, ACM

Press, New York, NY. Not only is the guide a wealth of information, but it also lists twenty other sources for

reference on photon mapping, twelve on raytracing, four on data structures, and nearly sixty other references.

225



www.manaraa.com

C.6 Lesson Guide

C.6.1 Suggested Course Policies

1. Suggested textbook:Data Structures and Algorithm Analysis in C++ by Mark Allen Weiss, published

by Addison Wesley Publishing Company.

2. Maximum grade for simply meeting guidelines be lower than100%.

3. Allowance of problem discussion and minor debugging withother students.

4. Prohibition of code sharing, whether verbally or electronically.

C.6.2 Description of the Assignment

This is an important opportunity for the instructor to sell students on the idea of investing time into

an assignment with exciting results. Selling the assignment might include the display of images the students

will be able to create, description of the technique, and explanation of the impact of this technique in industry.

C.6.3 Provision of Raytracer

While providing starter code is not typically part of theτέχνη curriculum, photon mapping is an

addition to basic raytracing. Students should have their own raytracers from CS2 and may use them. However,

as most students will not have implemented refraction, it isbest to provide them with the compiled code of a

raytracer that supports reflection, refraction, vertical and horizontal planes, and spheres to allow the creation

of the Cornell Box with a reflective and refractive sphere. The provided raytracer should be instrumental to

allow the addition of photon mapping.

C.6.4 Phase 1

Lighting with a photon map composed of photons (in an array) randomly-placed on a surface. The

benefit of randomly-placed photons is the ability to get visual results before the entire algorithm is imple-

mented. Required knowledge: random numbers, beginnings ofruntime complexity, nearest neighbor func-

tion, illumination algorithm.

1. Create a function to randomly generate photons with x, y, zvalues on an object in the scene (or multiple

objects in the scene).

226



www.manaraa.com

2. Create a photon structure to store information about a photon (e.g. location, color, incoming direction).

3. Create a function to generaten photons and store them in an array.

4. Create a nearest neighbor function that searches the array (very slowly). This may be a good time to

begin discussion of runtime complexity.

5. Update the raytracer to include lighting from photon mapping. For added clarity, raytrace with no

lights other than the random photons.

C.6.5 Phase 2

Lighting with a photon map composed of unreflected photons from a single point light stored in an

array. The runtime will still be remarkably slow. Required knowledge: photon emission algorithm.

1. Create a function to randomly generaten directions from the point light. x, y, and z should be

randomly generated. The azimuth (longitude) maybe be generated randomly from [0, 2π] and the

elevation (latitude) will have to be chosen with probability proportional to is circumference. i.e.,

A = 2π × random(0, 1),e= arcsin(2random(0, 1)− 1).

2. Trace each photon from the light toward the generated direction and scale the power by the number of

photons emitted.

3. Store each photon at the point of ray, object intersection.

C.6.6 Phase 3

Lighting with a photon map composed of unreflected photons with nearest neighbor found via a

maxheap. Required knowledge: heaps and binary heap structure, complexity

1. Create a binary maxheap class for storingn nearest neighbor photons.

2. Use the maxheap to improve the efficiency of locating the nearest neighbors.

C.6.7 Phase 4

Lighting with a photon map composed of unreflected photons stored in an unbalanced kd-tree. Re-

quired knowledge: kd-tree, complexity

227



www.manaraa.com

1. Create a kd-tree class to store the photons for efficient nearest neighbor searches.

2. Write the nearest neighbor search. This is a good time to discuss time and space complexity.

C.6.8 Phase 5

Lighting with a photon map composed of photons that have beenreflected, transmitted, or absorbed

using Russian roulette to statistically determine the fateof each photon. If 50% of photons are absorbed

after the first intersection, another 50% of those reflected or transmitted should be absorbed after the second

intersection. Required knowledge: use of reflection and refraction, color bleed.

1. Create a function to randomly determine whether a photon is reflected, transmitted, or absorbed using

a randomly generated value (Russian roulette) and the object’s diffuse and specular attributes.

2. Modify the color of the photons that are reflected by the color of the surface they interacted with. This

color alteration should produce a color bleed effect.

C.6.9 Phase 6

Lighting with a photon map composed of photons that are traced based on a projection map. The

projection map limits photons emitted to directions that will lead to an intersection with an object. Required

knowledge: matrices

1. Create a projection map from the light source consisting of little cells with boolean values indicating

whether emissions in that direction will lead to intersections.

2. Update the photon generation to generate only in directions that will lead to geometry intersections.

C.6.10 Phase 7

Lighting with a photon map that is a balanced kd-tree. Required knowledge: balancing algorithm.

1. Update the kd-tree to be balanced to improve efficiency.

C.6.11 Phase 8

Lighting with a photon map and a caustic photon map. Causticsare effects caused by light passing

through a refractive object or reflecting from a specular object and focusing to a strong intensity that causes

228



www.manaraa.com

highlights a diffuse object. A large number of photons should be emitted toward refractive surfaces to generate

good caustics. A separate caustic photon map should hold theresulting photons.

1. Create a second photon map to be used as the caustic photon map.

2. Create a second projection map that allows emission toward those geometries meant to generate caus-

tics.

3. Incorporate the caustic photon map into the lighting algorithm.

C.6.12 Phase 9

More accurate lighting effects can be achieved by using an ellipsoid neighborhood for photons ob-

tained by compressing the sphere neighborhood in the direction of the surface normal. This modification

means that photons incorrectly used at edges and in corners will be minimized. Required knowledge: com-

pression of sphere in the direction of the normal.

C.6.13 Phase 10

More accurate lighting effects can be achieved through use of a 2D Gaussian filtering. Filtering

reduces blurriness and leaked photons by increasing the weight of photons that are close to the point of

interest. Required knowledge: Gaussian filters

C.6.14 Phase 11

Lighting with multiple lights and varying light types. Required knowledge: methods of emitting

photons from different light shapes.

1. Create functions to emit photons from any light source type desired.

2. Add multiple lights (stored in a list) to the scene.

3. Scale the weight of the photons appropriately to account for multiple lights.

C.6.15 Phase 12

Inclusion of participating media, such as fog. This topic will likely need to be an optional challenge

for more advanced students and involves the creation of a volume map and use of ray marching and a volume

radiance estimate.

229



www.manaraa.com

Appendix D Tools and Techniques for Software Development Guide

D.1 Credits

3 (2 hour lecture and 2 hour lab)

D.2 Prerequisites

A strong knowledge of programming and some knowledge of Object-Oriented design.

D.3 Course Goals

This course covers the following computer science skills and techniques:

• Understanding of Object-Oriented programming and design.

• Understanding of advanced OO techniques: inheritance, polymorphism, abstract classes, etc.

• Understanding of advanced programming techniques: event handling, exceptions, threads, network

communications.

• Intermediate-level programming skills in Java.

D.4 Course Description

This course is structured around the creation of a GUI-based, networked chess game. To do some-

thing as large as a chess game, programmers must break the task into smaller phases (in line with the princi-

ples of Extreme Programming). This chess game can be broken down into as many as 20 phases, which can

then be grouped into assignments as the instructor wishes. Descriptions of each phase, including examples

solutions for the instructor to follow. These solutions arein Java and are merely for guidance and not meant

to imply that there are not other, better ways to write chess playing programs.

D.5 Resources

In addition to the course textbook, Sun’s online Java™Tutorials are quite helpful and have up-to-date

information about all aspects of Java (http://java.sun.com/docs/books/tutorial/ ).

230



www.manaraa.com

D.6 Lesson Guide

D.6.1 Suggested Course Policies

1. Suggested text:Object-Oriented Software Development Using Java, Second Edition, by Xiaping Jia,

2002.

2. Maximum grade for simply meeting guidelines be lower than100%.

3. Allowance of problem discussion and minor debugging withother students.

4. Prohibition of code sharing, whether verbally or electronically.

5. Requirement of individual, brief (5-10 minute) presentations on relevant topics. e.g., Java style con-

ventions (pp. 25, 103, 112, 649-651), Java 2 Platform (3.1 pp. 56-58), XP (1.4.3 pp. 15-16), UML (pp.

21-25), Javadoc (6.1.4 pp. 214-216, 647, 648), jar (pp. 71-72), Packages (4.5 pp. 134-138), Wrapper

Classes (4.4.9 pp. 128-130), String vs. String Buffer (4.4.8 pp. 118, Java API), replacement for goto:

break and continue with statement labels (4.3.7 pp. 99-100), interning strings (4.4.8 pp. 118-122),

Double Buffering (Example 5.3 p. 194), etc.

D.6.2 Selling the Assignment

This is an important opportunity for the instructor to sell students on the idea of investing time into

an assignment with exciting results. Selling the assignment might include the display of images the students

will be able to create, description of the technique, and explanation of the impact of this technique in industry.

D.6.3 Checkers Rules

While the final project is chess, checkers provides a simple starting point that can be transitioned

smoothly into chess.

1. Played on an 8 x 8 checkered board. (International checkers is played on a 10 x 10 board with different

capturing/crowning rules.)

2. Each of the two players begins with 12 round, matching pieces with the plain sides facing up. The two

sets are pieces are different colors (e.g. white and red).

3. The pieces are placed on the first three rows of the player’sside on the dark squares.

231



www.manaraa.com

4. Players take turns.A player loses when he cannot make a valid play.

5. If a piece reaches the end row opposite from its beginning side, it is crowned (typically, a second piece

is flipped over and stacked on top of it.) Crowned pieces are called “kings.” Uncrowned are called

“men.”

6. Valid plays:

(a) Man: one diagonal “move” forward one square OR one or morediagonal “jumps” forward two

squares over an opponent’s piece(s) that is diagonally one square away. Jumped pieces are re-

moved.

(b) King: one diagonal move in any direction OR one or more diagonal jumps in any direction(s)

over an opponent’s piece(s) diagonally one square away. Jumped pieces are removed.

7. If a player can jump, he must jump and continue to jump untilhe cannot jump or is crowned.

D.6.4 Object-Oriented Software Development

1. Purpose: “The object-oriented software development methodology aims to significantly improve cur-

rent software development practice” (Object-Oriented Software Development Using Java2nd Ed., X.

Jia, p.2).

2. Software: “the source code as well as all the associated documentation produced during the various ac-

tivities in the software development process. The documentation of software may include requirements

specifications, architecture and design documents, configuration data, installation and user manuals,

and so on” (Ibid, p. 4).

3. Steps of OO development: 1) identify the classes, 2) identify the attributes and behaviors of the classes,

3) identify the relationships among the classes, 4) define the class interface, then 5) implement the

classes.

4. A class: a “blueprint” of an object that defines each object’s instance variables and methods. A class

can have “class” variables and methods as well. There are notcopies of class methods and variables

for each object but instead one copy for the entire class.

5. An object: an instance of a class; a variable whose type is that of a class. An object receives a copy of

every instance variable and non-static method in the class.Although objects have access to the static

232



www.manaraa.com

(class) variables and methods, there is only one copy of eachstatic member for the class and all its

objects.

6. Creating an object and storing a reference to it:

(a) Declare a reference variable (Java has primitive data types and reference variables) of the type of

the class you want the object to be an instance of. e.g.Person p;

(b) Assign p to a new instance of the object by using the keyword new to call its constructor. e.g.p

= new Person ("Shirley");

7. Calling non-static methods:

(a) Create an object of the class with the method you wish to call.

(b) Use the object name, followed by a dot (.) before the method name and its arguments. e.g.

p.toString();

8. Calling static methods: Use the class name, followed by a dot (.) before the method name and its

arguments. e.g.Integer.parseInt("5");

9. UML diagramming: class represented by a box with the classname at the top, data attributes under the

name, and methods under the data attributes. More details may be found in Jia’s textbook, pp. 21-23.

10. Identification of the nouns in checkers. e.g. game, piece, man, king, color, board, square, player, a

move, a jump, a play, window, message bar, network communication.

11. Identification of the behaviors (verbs). e.g. play, move, jump, can play, can move, can jump, crown,

send play, finish play, get play, set or clear piece, set message bar, draw.

12. Identification of relationships. e.g. king is a piece, man is a piece, board has squares, square has a

piece, player has pieces, pieces have color, game has a board, game has two players, player uses a

board.

13. Class structures will be explored more fully after the introduction of the programming language: Java.

In order to get students up to speed more quickly, initial lectures on checkers rules and OO design can

be intermixed with Java material.

233



www.manaraa.com

D.6.5 Phase 1

Phase one is the creation of an empty, GUI-based checkerboard. Required Material: Introductory

Java, Java graphics, inheritance, overriding methods, invoking parent methods.

1. Introduction to Java™(background and structure). Note: this can be sprinkled into early lectures in

order to get students on track sooner.

(a) Object-oriented programming language developed by a research team led by James Gosling at

Sun Microsystems (Ibid, p. 55).

(b) Features: OO, distributed (designed for developing distributed applications), platform indepen-

dent, secure (all programs run in their own “sand boxes”).

(c) Goals of Java’s design: platform independence, security, and efficiency.

(d) Java Virtual Machine: Java is executed in two stages: compilation to byte-code followed by

execution of byte-code. Execution of byte-code is done by 1)interpretation, 2) Just-in-Time

compilation, OR 3) direct execution via a Java chip (in PDAs,TV set-top boxes, and cellular

phones).

(e) Java documentation is located at http://java.sun.com/. At the time of this writing, Java Standard

Ed. 6 was used http://java.sun.com/javase/6/docs/api/.

(f) Programs in Java:

i. ALL code in Java must be part of a class.

ii. Methods in Java programs are invoked by the objects they belong to, unless they arestatic

methods. Static methods can be called with the class’s name and a dot before the method.

iii. The first method executed in a Java application is themain. The main method must be

public to allow Java to call it, it must bestatic to allow it to be called without an object,

it must not return anything (bevoid), it must be namedmain, and it must take a parameter

of a String array, traditionally namedString []args.

iv. Java uses booleans, which are not equivalent to integersas in C/C++. Therefore,while (i)

is not valid. Instead usewhile (i!=0).

(g) Creating/Executing a Basic Java Program.

i. Create a file with the same name as the class you intend to write. e.g.

Program.java.

234



www.manaraa.com

public class Program {

public static void main (String []args) {

System.out.println ("Hello, World!");

}

}

Algorithm .148: Simple program

ii. In the file, create a class. If the class name matches the program file name, it can be declared

public. (If it is not declared public, it is “package visible”: visible to everything in that

package (or directory).)

iii. Create a main method. The main method is the starting point of Java programs. When

a Java program is executed (java Program), Program’s main method is starting point of

code execution. The method must be public to allow external invocation, it must be static

to allow invocation without the creation of an object, it never returns a value, and it ac-

cepts a String array holding any command-line arguments. Toprint a message, use the

java.lang.System.out object’sprintln method. the “ln” means that the print will be

followed by a new line. See Algorithm .148.

iv. Compile the program:javac Program.java

v. Execute the program:java Program The program should print

"Hello, World!" to the screen.

(h) Java Memory Handling

i. All primitive variables – byte (8 bits), short (16 bits), int (32 bits), long (64 bits), float (32

bits), double (64 bits), boolean (at least a bit), char (16 bits in range 0-65,535) – are stored

in non-dynamic memory.

ii. All objects are in dynamic, heap memory. Declaring an object variable merely creates mem-

ory for a “reference” for an object in non-dynamic memory. Tocreate an object, use the

keywordnew and call the constructor. e.g.new Board (8, 60);

iii. Arrays of any data type are objects. Arrays must be created usingnew or array initializer lists.

Array access is the same as in C/C++, but Java arrays also have data attributes specifying

their sizes. e.g.int size = intArray.length;

iv. Primitive variables are ALWAYS passed by value (a copy).

235



www.manaraa.com

v. Objects are ALWAYS passed by reference. To make a copy of anobject, useclone.

vi. Java handles cleaning up dynamically-allocated memoryvia garbage collection. Therefore,

programmers never need to free memory that has been allocated for objects.

(i) Java Style Conventions:

i. Packages are named for the reverse internet domain. e.g.

edu.clemson.mypackage. A package is a named collection of classes grouped into a direc-

tory. A file is declared part of a package with the keywordpackage followed by the package

name and a semicolon. Classes that are not part of a package are part of the “unnamed

package.”

ii. Class and interface names have capital letters for the first letter of every word in the name.

e.g.MyNewClass.

iii. Method and field names have lowercase first letters, followed by capitalization of the first

letter of every other word in the name (the so called, “camel case”). e.g.isKingInCheck.

Method names should be verbs and variable names should be nouns.

iv. Local variables follow the same conventions as field names, but they are typically shorter.

(e.g.buf for buffer,bg for background, etc.) If a variable is used for a very short time or is

a loop control variable, one-letter names are appropriate:

byte b, char c, double d, Exception e,

float f, int i, int j, int k, String s

v. Parameters: if a parameter’s sole purpose is setting a field, it is appropriate to name it the

same thing as the field, differentiating them bythis. e.g.this.width = width;

vi. Constants (“final variables”) are all capital letters with underscores separating the words. e.g.

NUM SQUARES

(j) Java Graphics:

i. The graphic components for the checkers/chess game will be from the javax.swing package,

which “provides a set of ‘lightweight’ (all-Java language)components that, to the maximum

degree possible, work the same on all platforms” (Java API).The Checker/chess game will

use JComponents and their child classes.

ii. Painting of colors or images will depend on the java.awt package, which “contains all of the

classes for creating user interfaces and for painting graphics and images” (Java API).

236



www.manaraa.com

iii. Event handling will rely on the java.awt.event package, which “provides interfaces and

classes for dealing with different types of events fired by AWT components” (Java API).

2. Description of necessary graphics components: JFrame and JPanel. The Board will be a JPanel held

by a JFrame.

(a) A frame, implemented as an instance of the JFrame class, is a window that typically has decora-

tions such as a border, a title, and buttons for closing and iconifying the window. Applications

with a GUI typically use at least one frame.

(b) A panel is a general-purpose container for lightweight components. Our example panel will be

placed on the frame and will hold the checkerboard surface. Unlike JFrames, JPanels are double-

buffered by default, and the pixel in the upper, left-hand corner(0,0) is below the border and

therefore visible.

3. Identification of classes needed (the nouns): Board, GameSquare, Panel, Frame. The JFrame and

JPanel classes are already written for us. The Board class will hold the colored squares and should fill

the entire JPanel. Each GameSquare class object will be an individual square on the checkerboard and

should know its location and how to draw itself.

4. Design the GameSquare class

(a) Attributes: row, column, color, and width. Since all thesquares will be the same size (and square),

width can be astatic class variable.

(b) Behaviors: draw.

(c) Relationships: Board has GameSquares.

5. Design the Board class

(a) Attributes: width, a list of squares, and a count of the numbers of squares across (typically 8 for

American checkers and 10 for international).

(b) Behaviors: creation of squares, invoking draw methods for squares.

(c) Relationships: Board has GameSquares, Board is a JPanel. Since the board will fill the entire

space of the JPanel and should control how the JPanel is drawn, Board will extend the JPanel

class. Although Board could inherit from JFrame (instead ofJPanel) and perform all drawing

237



www.manaraa.com

needed by overriding the JFrame paint method, JFrame does not perform double buffering and

has offset problems not present in JPanel. JPanel uses double buffers, and 0, 0 is the first draw-able

location in the upper left-hand corner. Thus, the JFrame will hold a Board which is a JPanel.

6. Discussion of the Color class.

(a) The color class has public static Color objects of many typical colors.

(b) If you want to specify a color, use a constructor to specify the rgb values.

7. Discussion of how a Board can be a JPanel: inheritance.

(a) Inheritance is an extension relationship between two classes. The subclass extends (i.e. is a child

of) the superclass.

(b) Inheritance models the “is-a” relationship. e.g. If theclass “Student” extends “Person,” Student

is a Person. Student is a specialization of the general Person class.

(c) The sub class receives all of the public andprotected behaviors and attributes.

(d) The sub class can add its own behaviors and attributes, aswell as “override” the behaviors (meth-

ods) of the super class. A method in a super class is overridden by the sub class if the subclass

has a method with the identical signature and return type (with different functionality). e.g., if

the Person class has atoString()method that returns the String “Person”, Student may write a

methodtoString() to instead return the String “Student.”

(e) Every class implicitly extends the superclass Object.

8. Create the GameSquare class. The attributes are a Color, arow, a column, and a static width. The

constructor should initialize the instance variables, anda static method can set the width. Instance

variables and class variables are usually private. See Algorithm .149. The behavior the GameSquare

needs to implement is the ability to draw itself. The square is drawn as a rectangle filled with the

specified color with equal sides that starts at the appropriate row and column, which are based on

the width of each square. This drawing with be done by means ofa Graphics2D object that will be

passed to GameSquare’s draw method. “This Graphics2D classextends the Graphics class to provide

more sophisticated control over geometry, coordinate transformations, color management, and text

layout. This is the fundamental class for rendering 2-dimensional shapes, text and images on the

Java™platform” (Java API http://java.sun.com/javase/6/docs/api/). The Graphics class has a method

238



www.manaraa.com

import java.awt.*; // for Color and Graphics2D

public class GameSquare {

private Color bgcolor;

private int row, col;

private static int width;

public GameSquare (Color bgcolor, int row, int col) {

this.bgcolor = bgcolor;

this.row = row;

this.col = col;

}

public static void setWidth (int width) {

GameSquare.width = width;

}

Algorithm .149: Beginning of the GameSquare class

public void draw (Graphics2D g) {

g.setPaint(bgcolor);

g.fillRect(col*width, row*width, width, width);

}

}

Algorithm .150: Draw method for creating the square in the appropriate location

fillRect that creates a solid-colored rectangle starting at the specified location that is the given width

and height. The color of the rectangle must be set first via theGraphics2D’ssetPaint method. See

Algorithm .150.

9. Create the Board class.

(a) Make the Board extend JPanel.

(b) Create all the instance and class variables the Board class needs: width of each square, the number

of squares across the board, and a two-dimensional array of the squares. As usual, the fields are

private. The number of squares across will not change duringexecution and can therefore be a

constant. Constants in Java are specified by the keywordfinal. Additionally, since the value is

the same for any instance of the board, the number of squares can also be static.

(c) Create a method to initialize the squares. This method will be invoked by the Board constructor

and can therefore be private. It will handle creating the colors of the squares (a light and a dark),

239



www.manaraa.com

creating each square, and storing its reference in an array.SinceGameSquare.setWidth is static,

it can be invoked using the class name.

To create each of the 64 squares, there must be two nested for loops that get their values from the

size of the array using length. Since it is a two-dimensionalarray,length stores the number of

rows. To determine the number of columns per row, use thelength variable of any individual

row. e.g.squares[0].length.

Since the board is checkered, the colors must alternate. Checkering may be achieved by deter-

mining whether the sum of the row number and column number is even or odd. The color of the

square is light for even sums and dark for odd.

(d) Create the Board constructor to initialize its variables and create the JFrame object that will hold

this Board. The JFrame with and height can be computed up front. See Algorithm .151.

(e) Set the JFrame’s default close operation to exit. This setting means that when a user closes the

JFrame, the application exists.

(f) Invoke thebuildGameSquaresmethod to create the GameSquare objects.

(g) Add this Board to the frame and make the frame visible.

(h) Overwrite JPanel’s paint method to call each GameSquare’s draw method in a loop using the

passed in Graphics object. The draw method in the GameSquareclass must have aGraphics2D

object passed to it, but the paint method is passed aGraphics object. Fortunately, the passed-in

object is truly aGraphics2D object and can be cast appropriately.

JPanel (and thus Board) inheritspaint fromJComponent. The paint method is invoked by Swing

to draw components. As noted in the Java API, “applications should not invoke paint directly, but

should instead use the repaint method to schedule the component for redrawing.” Since the JPanel

class already has a paint method that renders the JPanel overtop of the JFrame, its paint method

should be invoked first before the Board’s modifications are done. To call a parent class’s method

in Java, use the keywordsuper.

(i) Create the main method to create the Board object. See Algorithm .151 and Figure 41.

D.6.6 Phase 2

Phase two is the creation of a GUI-based checkerboard set correctly with colored, filled circles.

Required material: Graphics2D drawing tools

240



www.manaraa.com

import javax.swing.*; // For the JFrame and JPanel classes

public class CheckerBoard extends JPanel {

private int squareWidth = 60;

private static final int NUM_ACROSS = 8;

private GameSquare squares[][];

private void buildGameSquares() {

Color dark = new Color (21, 106, 89);

Color light = new Color (255, 255, 213);

squares = new GameSquare [NUM_ACROSS][NUM_ACROSS];

GameSquare.setWidth (squareWidth);

for (int i = 0; i < squares.length; ++i) {

for (int j = 0; j < squares[i].length; ++j) {

if ((i+j)%2 == 0) {

squares[i][j] = new GameSquare(light, i, j);

} else {

squares[i][j] = new GameSquare(dark, i, j);

}

}

}

}

public CheckerBoard () {

int width = squareWidth*NUM_ACROSS;

int height = squareWidth*NUM_ACROSS;

JFrame frame = new JFrame("Checkers");

frame.setSize (width, height);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

buildGameSquares();

frame.add(this);

frame.setVisible(true);

}

public void paint(Graphics g) {

super.paint(g);

for (int i = 0; i < squares.length; ++i) {

for (int j = 0; j < squares[i].length; ++j) {

squares[i][j].draw((Graphics2D)g);

}

}

}

public static void main (String []args) {

new CheckerBoard();

}

}

Algorithm .151: CheckerBoard class

241



www.manaraa.com

Figure 41: Checkerboard

1. Identification of new classes needed: Piece and Checkers.Checkers will be in charge of placing the

pieces on the board. In the future, Checkers will also hold the JFrame containing the board.

2. Design of the Piece class:

(a) Attributes: color, row, column,static width, static square width.

(b) Behaviors: draw, setup and accessor methods.

(c) Relationships: GameSquare has a Piece.

3. Design of the checkers class:

(a) Attributes: Board, (width, number of squares per side).

(b) Behaviors: initialization, setup pieces.

(c) Relationships: Checkers has a Board.

4. Updated design of the GameSquare class:

(a) New Attributes: Piece.

242



www.manaraa.com

import java.awt.*;

public class Piece {

private Color color;

private int row, col;

private static int squareWidth, width;

public Piece (Color color) {

this.color = color;

row = -1;

col = -1;

}

public Piece (Color color, int row, int col) {

this.color = color;

this.row = row;

this.col = col;

}

public void setLocation (int row, int col) {

this.row = row;

this.col = col;

}

public static void setSquareWidth (int sqWidth) {

squareWidth = sqWidth;

width = (int)(squareWidth * 0.8f);

}

Algorithm .152: Piece class instance variables and accessor/mutator methods

(b) New Behaviors: Accessing, drawing, and updating Piece.

(c) New Relationships: GameSquare has a Piece.

5. Updated design of the Board class:

(a) New Behaviors: Placing a Piece at a specified location.

(b) New Relationships: Checkers has a Board.

6. Create the Piece class.

(a) Declare all needed attributes, constructors, and get/set methods. The diameter of the piece is 80%

of the square’s width. See Algorithm .152.

(b) Create a draw method to generate the graphical representation of the piece. Call the Graphics

object’s fillOval method to draw a filled, colored circle centered on the piece’s location with a

243



www.manaraa.com

public void draw (Graphics2D g) {

int left = (int)(col*squareWidth + squareWidth*0.1f);

int top = (int)(row*squareWidth + squareWidth*0.1f);

g.setPaint(color);

g.fillOval (left, top, width, width);

}

}

Algorithm .153: Piece’s draw method

width 80% of the square. The diameter of the piece is already set to 80% in thewidth variable.

Drawing of the circle must begin 10See Algorithm .153.

7. Update the GameSquare class to hold a reference to the Piece on that GameSquare, allow access to the

Piece, draw it whenever the GameSquare object is drawn, and update the Piece width whenever the

GameSquare width changes. See Algorithm .154.

8. Create a method in Board to allow a piece to be placed on a given GameSquare, as in Algorithm .155.

9. Update the Board constructor to accept as parameters the values of the square width and the number of

squares across. Since checkers will now be responsible for creating the Board, checkers should be able

to set such values. See Algorithm .156.

10. Define the checkers class to create the Board with squaresof the appropriate width and number across

and to place the pieces on the Board. The colors of the pieces are slightly darkened red and white.

Later, when the pieces are made to have a three-dimensional appearance, they cannot be as bright as

full red and white. See Algorithm .157.

ThesetOutPieces method will place twelve dark and twelve light pieces on every other square of

the board (i.e. the dark squares). The light pieces are on thetop three rows, and the dark pieces are on

the bottom three rows. The newly created pieces will be placed on the board at the specified row and

column using the Board’ssetPiece method. After all the pieces are placed, the Board needs to be

redrawn to reflect the added pieces. Since thepaintmethod cannot be called directly, we instead call

therepaint()method to schedule a call topaint. See Algorithm .158.

Create a main in the Checkers class to create the Checkers object. See Algorithm .159 and Figure 42.

244



www.manaraa.com

// in GameSquare.java

import java.awt.*;

public class GameSquare {

private Color bgcolor;

private int row, col;

private Piece piece;

private static int width;

public GameSquare (Color bgcolor, int row, int col) {

this.bgcolor = bgcolor;

this.row = row;

this.col = col;

piece = null;

}

public void setPiece (Piece piece) {

this.piece = piece;

if (piece != null) piece.setLocation (row, col);

}

public Piece getPiece () {

return piece;

}

public void draw (Graphics2D g) {

g.setPaint(bgcolor);

g.fillRect (col*width, row*width, width, width);

if (piece != null) {

piece.draw (g);

}

}

public static void setWidth (int width) {

GameSquare.width = width;

Piece.setSquareWidth (width);

}

}

Algorithm .154: Square class

// in CheckerBoard.java

public void setPiece (int row, int col, Piece piece) {

squares[row][col].setPiece(piece);

}

Algorithm .155: CheckerBoard Piece placement method

245



www.manaraa.com

public class CheckerBoard extends JPanel {

private int squareWidth;

private int numAcross;

private GameSquare squares[][];

public CheckerBoard (int squareWidth, int numAcross) {

this.squareWidth = squareWidth;

this.numAcross = numAcross;

int width = squareWidth*numAcross;

int height = squareWidth*numAcross;

JFrame frame = new JFrame("Checkers");

frame.setSize (width, height);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

buildGameSquares();

frame.add(this);

frame.setVisible(true);

}

Algorithm .156: Updated CheckerBoard constructor

import java.awt.Color;

public class Checkers {

private CheckerBoard board;

private int squareWidth=60;

private int numAcross=8;

public Checkers() {

board = new CheckerBoard(squareWidth, numAcross);

setOutPieces(new Color (230,230,230), new Color(210,0,0));

}

Algorithm .157: Beginning of Checkers class

246



www.manaraa.com

private void setOutPieces (Color light, Color dark) {

for (int row=0; row < 3; ++row) {

for (int col=(row+1)%2,int cnt=0;cnt <4; col+=2,++cnt){

board.setPiece (i, j, new Piece (light));

}

}

for (int row=5; row < 8; ++row) {

for (int col=(row+1)%2,int cnt=0;cnt <4; col+=2,++cnt){

board.setPiece (i, j, new Piece (dark));

}

}

board.repaint();

}

Algorithm .158: Piece placement method

public static void main (String []args) {

Checkers checkers = new Checkers();

}

}

Algorithm .159: Checkers class instantiation

Figure 42: Checkerboard with immobile pieces

247



www.manaraa.com

public void draw (Graphics2D g) {

int left = (int)(col*squareWidth + squareWidth*0.1f);

int top = (int)(row*squareWidth + squareWidth*0.1f);

int innerLeft = (int)(left + squareWidth * 0.1f);

int innerTop = (int)(top + squareWidth * 0.1f);

g.setPaint(color);

g.fillOval (left, top, width, width);

Algorithm .160: Beginning of the Piece class draw method

g.setPaint(Color.black);

g.drawOval (innerLeft, innerTop, (int)(squareWidth*.6),

(int)(squareWidth*.6));

}

Algorithm .161: End of draw method

D.6.7 Phase 3

Phase three is the creation of a GUI-based checkerboard set correctly with smooth, 3D-looking

pieces. Required knowledge: Concept of anti-aliasing, gradient paint tool

1. Update the Piece class’s draw method to draw a smaller, thicker ring over top of the filled circle.

(a) Determine the starting point for the inner ring’s left and top, as in Algorithm .160.

(b) Change the color and draw an oval starting at the specifiedinnerLeft and innerTop that is 60% the

width of the square. See Algorithm .161 and Figure 43.

(c) The checkers still look fake. Instead of a thin, black ring, make a slightly thicker ring with

shading from dark to light, giving the checker the appearance of having an inset groove. To do

this, we must make an object of theGradientPaint class that shades diagonally from a dark

version of the checker’s color to a light version of the checkers color. GradientPaint needs to

know the starting location of the gradient, the ending location, and the two colors to use for the

gradient. We already have the starting point: innerLeft andinnerTop. The other point is similar.

See Algorithm .162.

(d) Once the filled circle is drawn, create the GradientPaintobject and set it to be the current paint.

The dark color and the light color for the gradient will be computed by Color’s built-indarker()

andbrighter()methods. See Algorithm .163.

248



www.manaraa.com

Figure 43: Checkerboard with inner circle

public void draw (Graphics2D g) {

int left = (int)(col*squareWidth + squareWidth*0.1f);

int top = (int)(row*squareWidth + squareWidth*0.1f);

int innerLeft = (int)(left + squareWidth * 0.1f);

int innerTop = (int)(top + squareWidth * 0.1f);

int innerRight =(int)((col+1)*squareWidth-squareWidth*0.3f);

int innerBottom=(int)((row+1)*squareWidth-squareWidth*0.3f);

g.setPaint(color);

g.fillOval (left, top, width, width);

Algorithm .162: Beginning of updated draw method

GradientPaint shade = new GradientPaint(innerLeft, innerTop,

color.darker(), innerRight, innerBottom, color.brighter());

g.setPaint(shade);

Algorithm .163: Gradient Paint

249



www.manaraa.com

g.setStroke(new BasicStroke(2.0f));

g.drawOval (innerLeft, innerTop, (int)(squareWidth*.6),

(int)(squareWidth*.6));

}

Algorithm .164: Creation of inset circle

Figure 44: Checkerboard with 3D pieces

(e) Use thesetStrokemethod to thicken the stroke and finally draw the ring. See Algorithm .164

and Figure 44.

(f) The Graphics2D object’saddRenderingHintsmethod lets users turn on anti-aliasing to smooth

the pieces. The call can be made in the Board class’s paint method. First, create theRenderingHints

object to be used. See Algorithm .165 and Figure 45.

D.6.8 Phase 4

Phase four is the creation of a GUI-based checkerboard that allows pieces to be dragged to any

square. Required knowledge: Mouse events.

250



www.manaraa.com

// in CheckerBoard.java

public class CheckerBoard extends JPanel {

private int squareWidth;

private int numAcross;

private GameSquare squares[][];

public CheckerBoard (int squareWidth, int numAcross) {

this.squareWidth = squareWidth;

this.numAcross = numAcross;

int width = squareWidth*numAcross;

int height = squareWidth*numAcross;

RenderingHints hints = new RenderingHints(

RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);

JFrame frame = new JFrame("Checkers");

frame.setSize (width, height);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

buildGameSquares();

frame.add(this);

frame.setVisible(true);

}

Algorithm .165: Addition of anti-aliasing

Figure 45: Checkerboard with 3D, anti-aliased pieces

251



www.manaraa.com

// In CheckerBoard.java

public int numAcross() {

return numAcross;

}

Algorithm .166: Number across accessor method

1. Identification of new classes needed: a MouseAdapter. TheMouseAdapter class already exists in

the java.awt.event. We need to override its behaviors and will therefore createa child class of

MouseAdapter.

2. MouseAdapter Child Class Design

(a) Behaviors: mouse button press, drag, and release.

(b) Relationship: child of MouseAdapter, (inner class of CheckerBoard).

3. Piece Design Update

(a) New Behaviors: make play, draw at a given X,Y location.

4. Board Design Update

(a) New Attributes: mouse x and y location, currently movingpiece, and access to the number of

squares across (for bounds checking).

(b) New Behaviors: creation of mouse listeners, drawing of currently moving piece.

(c) New Relationships: contains the MouseAdapter child class.

5. Update Board to allow access to the number of square across(for bounds checking), as in Algorithm

.166.

6. Create a new Piece draw method that centers the piece at thegiven (mouse) location. See Algorithm

.167.

7. Update Piece’sdraw (Graphics2D)method to invoke the newdraw (Graphics2D, int, int) in

order to reduce redundant code. See Algorithm .168.

8. Create a method in the Piece class for performing moves once a user has indicated (via dragging) where

the piece is to go. In order to perform moves, the method must have the new location of the Piece and

252



www.manaraa.com

public void draw (Graphics2D g, int x, int y) {

int left = (int)(x - squareWidth*0.4f);

int top = (int)(y - squareWidth*0.4f);

int innerLeft = (int)(left + squareWidth * 0.1f);

int innerTop = (int)(top + squareWidth * 0.1f);

int innerRight = (int)(x + squareWidth*2.0f);

int innerBottom = (int)(y + squareWidth*2.0f);

g.setPaint(color);

g.fillOval (left, top, width, width);

GradientPaint shade = new GradientPaint(innerLeft, innerTop,

color.darker(), innerRight, innerBottom, color.brighter());

g.setPaint(shade);

g.setStroke(new BasicStroke(2.0f));

g.drawOval (innerLeft, innerTop, (int)(squareWidth*.6),

(int)(squareWidth*.6));

}

Algorithm .167: Piece draw method with center location specified

public void draw (Graphics2D g) {

int x = col*squareWidth + squareWidth/2;

int y = row*squareWidth + squareWidth/2;

draw (g, x, y);

}

Algorithm .168: Simplified Piece draw method

253



www.manaraa.com

public boolean makePlay(int endRow,int endCol,CheckerBoard b){

if (endRow < 0 || endRow >= b.numAcross() ||

endCol < 0 || endCol >= b.numAcross())

return false;

b.setPiece(endRow, endCol, this);

}

Algorithm .169: Piece play method

public class CheckerBoard extends JPanel {

private int squareWidth;

private int numAcross;

private GameSquare squares[][];

private int mouseX, mouseY;

private Piece mover;

private RenderingHints hints;

Algorithm .170: Addition of reference to moving piece

access to the Board in order to notify its newly-occupied square about the move and make sure the

move is not outside the Board’s boundaries. See Algorithm .169.

9. Update Board to have a variable for the Piece being draggedand the current mouse location. See

Algorithm .170.

10. Update Board’s paint method to draw the piece being moved(if any) at the current mouse coordinates.

See Algorithm .171.

11. Create the MouseAdapter child class to handle mouse events. The MouseAdapter can be the Board

(if it implementsMouseListener), an anonymous class, or a nested class inside the Board class. See

public void paint(Graphics g) {

super.paint(g);

((Graphics2D)g).addRenderingHints(hints);

for (int i = 0; i < squares.length; ++i) {

for (int j = 0; j < squares[i].length; ++j) {

squares[i][j].draw((Graphics2D)g);

}

}

if (mover!=null)mover.draw((Graphics2D)g, mouseX, mouseY);

}

Algorithm .171: Updated CheckerBoard’s paint method

254



www.manaraa.com

// In CheckerBoard.java in the CheckerBoard class

class PlayListener extends MouseAdapter {

Algorithm .172: Extension of the MouseAdapter

public void mousePressed(MouseEvent e) {

if (mover == null) {

int col = (int)(e.getX()/squareWidth);

int row = (int)(e.getY()/squareWidth);

mover = squares[row][col].getPiece();

if (mover != null) {

squares[row][col].setPiece(null);

} else {

mover = null;

}

}

mouseX = e.getX();

mouseY = e.getY();

repaint();

}

Algorithm .173: Mouse pressed event

Algorithm .172. The three events involved with moving a piece to a new location are

public void mousePressed (MouseEvent e),

public void mouseDragged (MouseEvent e), and

public void mouseReleased (MouseEvent e). When the mouse is pressed, the piece in the

square the mouse is over should be removed and become “attached” to the cursor. To attach the piece to

the cursor, set Board’s “mover” variable to be a reference tothe piece being moved and track the current

mouse coordinates. The piece will be drawn centered on thosecoordinates in Board’s paint method.

After the changes are made, the Board must be repainted to reflect the changes. See Algorithm .173.

When the mouse is dragged, a mouse button is being depressed while the mouse moves. If there is a

piece that is currently the “mover,” each time the mouse is dragged, the piece should be redrawn at the

new mouse coordinates. See Algorithm .174.

When the mouse button is released, if there was a piece being moved, it should be set down on the new

square. If the new square is outside of the checkerboard, thepiece should jump back to its old position.

(“mover” is still storing its old position.) See Algorithm .175.

12. Update the Board class to create and add the MouseAdapteras the MouseListener and the MouseMo-

255



www.manaraa.com

public void mouseDragged(MouseEvent e) {

if (mover != null) {

mouseX = e.getX();

mouseY = e.getY();

repaint();

}

}

Algorithm .174: Mouse dragged event

public void mouseReleased (MouseEvent e) {

if (mover != null) {

int col = (int)(e.getX()/squareWidth);

int row = (int)(e.getY()/squareWidth);

if (mover.makePlay(row, col, CheckerBoard.this)) {

mover = null;

} else {

// play invalid; undo

squares[mover.getRow()]

[mover.getCol()].setPiece(mover);

mover = null;

}

}

repaint();

}

} // end MouseAdapter child class

} // end CheckerBoard outer class

Algorithm .175: Mouse released method

256



www.manaraa.com

public CheckerBoard (int squareWidth, int numAcross) {

this.squareWidth = squareWidth;

this.numAcross = numAcross;

int width = squareWidth*numAcross;

int height = squareWidth*numAcross;

hints = new RenderingHints(RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);

JFrame frame = new JFrame("Checkers");

frame.setSize (width, height);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

buildGameSquares();

frame.add(this);

frame.setVisible (true);

PlayListener listener = new PlayListener();

addMouseListener(listener);

addMouseMotionListener (listener);

}

Algorithm .176: Addition of listener

tionListener. Mouse events involving motion (drag and move) must handled by MouseMotionListeners.

Other mouse events (press, release, click (a combination ofpress and release), etc.) must be handled

by MouseListeners. The Board JPanel must add action listeners to handle these events. Obviously, the

listener will be the MouseAdapter child class that was just written (in our example, “PlayListener”).

See Algorithm .176.

D.6.9 Phase 5

Phase five is the creation of a GUI-based checkerboard that allows pieces to be moved to valid move

locations (diagonally forward). Turns do not matter yet.

1. Identification of new classes needed: Player. The Player class will keep track of the color and direction

of its pieces. Piece no longer needs to track its color but only its Player. Later on, Player will be

responsibly for taking turns, identifying when the game hasbeen completed, sending plays over the

network, etc.

2. Player Design

(a) Attributes: color and direction

(b) Behaviors: initialization and data access

257



www.manaraa.com

import java.awt.Color;

public class Player {

private boolean goingDown;

private Color color;

public Player (Color color, boolean goingDown) {

this.color = color;

this.goingDown = goingDown;

}

public Color getColor() {

return color;

}

public boolean goingDown() {

return goingDown;

}

}

Algorithm .177: Player class

(c) Relationships: Piece has a Player

3. Piece Design Update

(a) New Attributes: Player replaces Color

(b) New Behaviors: move validation

(c) New Relationships: Piece has a Player

4. Checkers Design Update

(a) New Behaviors: Creation of two Players

(b) New Relationships: Checkers uses two Players

5. Board Design Update

(a) New Behaviors: Allow access to Pieces on the Board.

6. Create Player class. The attributes needed are a color anda direction. The directions the pieces move

on the board are up and down. Since there are only two values, Player’s direction can be tracked by a

boolean. The only behaviors Player currently needs to perform are initialization and instance variable

access. See Algorithm .177.

258



www.manaraa.com

public class Piece {

private int row, col;

private Player player;

private static int width, squareWidth;

public Piece (Player player) {

this.player = player;

row = -1;

col = -1;

}

public Piece (Player player, int row, int col) {

this.player = player;

this.row = row;

this.col = col;

}

Algorithm .178: Addition of a Player to the Piece class

// in Piece.java

public Color getColor () {

return player.getColor();

}

Algorithm .179: Updated color accessor method

7. Add a Player instance variable to Piece and remove Color. Additionally, update the constructors to

accept a Player instead of a Color. See Algorithm .178.

Add agetColor()method to Piece to simplify getting the color from Player, asin Algorithm .179.

8. Update the Piece class to use Player instead of Color for drawing itself. See Algorithm .180.

9. Update Piece to validate attempted moves. A move (not a jump) is valid if it is to an empty, valid square

diagonally one square forward, where the forward is the direction dictated by the Piece’s Player. Valid

moves have a row change of 1 in the direction of play and a column change of 1 or -1. See Algorithm

.181.

10. Update Piece’smakePlay to call isMove before allowing a move. See Algorithm .182.

11. Update checkers to create two players and pass them appropriately to the pieces. See Algorithm .183.

12. Add a method to the Piece class to accept an attempted play, confirm its validity, and perform the move

(or take it back).

259



www.manaraa.com

public void draw (Graphics2D g, int x, int y) {

int left = (int)(x - squareWidth*0.4f);

int top = (int)(y - squareWidth*0.4f);

int innerLeft = (int)(left + squareWidth * 0.1f);

int innerTop = (int)(top + squareWidth * 0.1f);

int innerRight = (int)(x + squareWidth*2.0f);

int innerBottom = (int)(y + squareWidth*2.0f);

g.setPaint(getColor());

g.fillOval (left, top, width, width);

GradientPaint shade = new GradientPaint(innerLeft, innerTop,

getColor().darker(), innerRight, innerBottom,

getColor().brighter());

g.setPaint(shade);

g.setStroke(new BasicStroke(2.0f));

g.drawOval (innerLeft, innerTop, (int)(squareWidth*.6),

(int)(squareWidth*.6));

}

Algorithm .180: Updated Piece draw method

// in Piece.java

private boolean isMove (int endRow, int endCol, CheckerBoard b) {

if (b.getPiece(endRow, endCol) != null) {

return false;

} else {

int dir = player.goingDown()? 1 : -1;

return (row+1*dir == endRow && (col+1==endCol || col-1==endCol)

);

}

}

Algorithm .181: Move validation

// in Piece.java

public boolean makePlay (int endRow, int endCol, CheckerBoard b) {

if (isMove (endRow, endCol, b)) {

b.setPiece(endRow, endCol, this);

return true;

} else {

return false;

}

}

Algorithm .182: Piece’s make play move with validation

260



www.manaraa.com

// in Checkers.java

private void setOutPieces (Color light, Color dark) {

int numLight = 12, numDark = 12;

Player top = new Player (light, true);

Player bottom = new Player (dark, false);

for (int row=0; row < 3; ++row) {

for(int col=(row+1)%2, int cnt=0;cnt <4;col+=2,++cnt){

board.setPiece (i, j, new Piece (top));

}

}

for (int row=5; row < 8; ++row) {

for(int col=(row+1)%2,int cnt=0;cnt <4;col+=2,++cnt){

board.setPiece (i, j, new Piece (bottom));

}

}

board.repaint();

}

Algorithm .183: Piece placement with associated players

13. Add a MouseAdapter object to the CheckerBoard as the MouseListener and MouseMotionListener.

14. Write the MouseAdapter’s mousePressed method to removethe selected piece from the square, set the

CheckerBoard moving piece as the piece from that location, and update the mouse coordinates (and

repaint).

15. Write the mouseDragged event to update the mouse coordinates and repaint.

16. Write the mouseReleased method to calls the Piece’s playmethod and clear the moved piece being

stored in the CheckerBoard object.

D.6.10 Phase 6

Phase six is the creation of a GUI-based checkers game that allows pieces to be moved or single-

jumped legally. Turns do not matter yet. No new knowledge is needed.

1. Identification of new classes needed: none.

2. Steps to allow single jumps:

(a) In the Piece class, add handling for validating a jump. (i.e. Is the target location 2 diagonal spaces

forward, over an opponent’s piece?)

261



www.manaraa.com

(b) In the Piece class, add handling for performing the jumps. (i.e. Place the piece in the new location,

and remove the jumped piece.)

D.6.11 Phase 7

Phase seven is the creation of a GUI-based checkers game thatallows pieces to be moved, singly-

jumped, and crowns pieces that reach the last rows. Turns do not matter yet. Required knowledge: A way to

draw stars on pieces.

1. Identification of new classes needed: King.

2. Identification of King’s attributes: none but inherited attributes.

3. Identification of King’s behaviors: initialization and drawing.

4. Identification of King’s relationship: King is a Piece.

5. Steps to allow crowning:

(a) In the King class, use the GeneralPath class to draw a staron the king pieces. An example of

drawing a star is in the online Java documentation

(http://java.sun.com/j2se/1.3/docs/guide/2d/spec/j2d-awt.fm4.html).

(b) In the appropriate class, add handling for checking whether a Piece has reached the end of the

board, and should be replaced by a King with its identical attributes.

D.6.12 Phase 8

Phase eight is the creation of a GUI-based checkers game thatallows pieces to be moved, singly-

jumped, crowned, and allows king plays. Turns do not matter yet. No new knowledge is needed.

1. Identification of new classes needed: none.

2. Steps to allow king plays: in the King class, override the play validations from the Piece class to allow

plays in both directions.

262



www.manaraa.com

D.6.13 Phase 9

Phase nine is the creation of a GUI-based checkers game that allows pieces and kings to be moved,

jumped, crowned, and requires multiple jumps to be completed. Turns do not matter yet. Required knowl-

edge: Mouse moved event.

1. Identification of new classes needed: none.

2. Steps to require multiple jump completion:

(a) Create methods in Piece and King to determine if a given Piece/King can jump.

(b) In CheckerBoard class, after a jump, check if the Piece object can jump again. If it can, do not

allow the piece to be put down until it can no longer jump.

(c) In the MouseInputAdapter class, add handling for mouseMoved events for when a piece cannot

be put down until the play is complete.

D.6.14 Phase 10

Phase ten is the creation of a GUI-based checkers game that allows pieces and kings to be moved,

jumped, crowned, and requires sides to take turns. The turnsmay be enforced using threads, as in an example

in Chapter 10 of the suggested textbook. Required knowledge: Optionally threads.

1. Identification of new classes needed: none.

2. Steps to allow taking turns:

(a) In the Player class,

i. Add a boolean indicating the Player’s turn, as well as corresponding get/set methods.

ii. Add a variable to hold a reference to the other player.

iii. When the Player’s turn is complete, set the turn for the other player.

(b) In the Piece/King class, add a method to determine whether a piece is selectable. (e.g. if it is this

Piece’s Player’s turn, it can be selected).

(c) In the CheckerBoard class, do not allow a piece to be selected unless the Piece is selectable.

(d) In the Piece/King class, appropriately end the Player’s turn. A Player’sturn is done when any

of the following occurs: a piece is moved, a piece is crowned,or a jumping piece can no longer

jump.

263



www.manaraa.com

D.6.15 Phase 11

Phase eleven is the creation of a GUI-based checkers game that allows pieces and kings to be moved,

jumped, and crowned, requires turns, and displays current turns. Required knowledge: Layout managers,

labels.

1. Identification of new classes needed: none.

2. Steps to allow displaying turns:

(a) Add a message bar (likely a JLabel) to display whose turn it is. (Likely in the Checkers class,

along with the initialization of the JFrame.)

(b) Add methods to set the the message bar to whose turn it is.

(c) In the Player class, add a String name (e.g. the player’s color) for display.

(d) When the Player’s turn is begun, set the message bar to display his turn, via an object of the class

holding the message bar.

D.6.16 Phase 12

Phase twelve is the creation of a GUI-based checkers game that allows pieces and kings to be moved,

jumped, and crowned, requires turns, displays current turns, and requires jumps whenever they are available.

No new knowledge is needed.

1. Identification of new classes needed: none.

2. Steps to allow forcing jumps when available:

(a) In the Player class, add a method to determine whether anyof the Player’s pieces can jump. (All

the pieces are located on the CheckerBoard.)

(b) At the beginning of each turn, determine whether the Player can jump and store the result.

(c) In the Piece class, do not allow a move to be completed if the Player can jump.

D.6.17 Phase 13

Phase thirteen is a fully-functional, GUI-based checkers game allowing only valid plays, requiring

turns, and displaying the winner when the game is completed.Required knowledge: Game lost algorithm.

264



www.manaraa.com

1. Identification of new classes needed: none.

2. Steps to allow displaying the winner:

(a) In the Player class, add a method to determine whether anyof the Player’s pieces can move or

jump. If a Player cannot perform a play, he has lost the game.

(b) If no pieces can move or jump, display that this Player lost and the other won.

D.6.18 Phase 14

Phase fourteen is a fully-functional, GUI-based checkers game with double-buffered graphics. Re-

quired knowledge: Double buffering.

1. Identification of new classes needed: none.

2. Steps allow double buffering. In the CheckerBoard class,

(a) Declare an Image instance variable to hold the offscreen drawing.

(b) Initialize the new Image object to be the current size of the CheckerBoard.

(c) In the paint method, perform all painting/drawing on the Image object’s

Graphics (image.getGraphics()).

(d) In the paint method, draw the image onto the passed-in Graphics object. (e.g.g.drawImage

(image, 0, 0, this);)

D.6.19 Phase 15

Phase fifteen is a fully-functional, double-buffered, GUI-based checkers game that allows resizing.

Required knowledge: Component listeners.

1. Identification of new classes needed: a new ComponentAdapter.

2. Identification of the new ComponentAdapter’s attributes: none.

3. Identification of the new ComponentAdapter’s behaviors:override the componentResized event method.

4. Identification of the new ComponentAdapter’s relationship: an extension of the ComponentAdapter

class, inner class of CheckerBoard.

265



www.manaraa.com

5. Steps to allow resizing:

(a) Make sure the Piece classes and GameSquare class have static methods for setting their widths.

(b) In componentResized method, get the smaller of the new dimensions. The dimensions can be

obtained from the Component’s providedgetSize()method.

(e.g.Board.this.getSize() or simplygetSize().)

(c) Reset the size on the double-buffer-related Image object.

(d) Set the width for the Piece and GameSquare classes.

D.6.20 Phase 16

Phase sixteen is a fully-functional, double-buffered, re-sizable, networked, GUI-based checkers

game. Required knowledge: Exceptions, Sockets, Java IO.

1. Exceptions

(a) Description

i. Exceptions change the flow of control when something unexpected (such as an error) has

occurred. Java exceptions are adapted from C++.

ii. In the past (such as in C), error conditions were typically indicated by returned error codes.

However, since programmers often forget to handle these problems, exceptions force some

sort of handling or end the program. Thus, exceptions encourage programmers to take error

conditions seriously.

(b) Handling Exceptions

i. An Exception is triggered by a “throw” statement. e.g.throw new Exception();

ii. If a method can throw an exception (that is not a “RuntimeException”), it must be declared

in the method head, e.g.public void method () throws Exception {}

iii. If a method handles all possible (non-runtime) exceptions, it does not need the throws state-

ment.

iv. To handle an exception, you must “catch” it. If a method you call can trigger an exception,

and you wish to handle it, you must put it in a “try-catch” block, e.g. Algorithm .184.

266



www.manaraa.com

try {

methodWithPossibleException();

} catch (PossibleException e) {

// handle exception. e.g.

System.err.println (e);

}

Algorithm .184: Sample exception handling

v. RuntimeExceptions are exceptions typically thrown by the Java runtime library code. Run-

timeExceptions are often considered “unrecoverable.” Because of their (typically) unrecov-

erable status, you are not required to handle RuntimeExceptions.

vi. As is the case with all exceptions, unhandled RuntimeExceptions crash the program. You

can catch RuntimeExceptions if you wish.

(c) In order to do networking and multi-threading, you must be able to handle exceptions.

(d) Additionally, in NetPlayer, if the input from the network is not in line with the specifications, a

user-defined Exception should be thrown.

2. Network play

(a) Identification of new classes needed: a network player.

(b) Identification of NetPlayer’s attributes: a port, a way to send to server, a way to receive from

server, knowledge of whether to go first.

(c) Identification of NetPlayer’s behaviors: client/server setup, override setTurn, and others.

(d) Identification of NetPlayer’s relationship: NetPlayeris a Player.

(e) Steps to allow network play:

i. In the Checkers class,

A. Optionally accept a server name from the command line.

B. If a server name was accepted, this session is the acting client. Set the NetPlayer to

move first with the dark-colored pieces. Otherwise, the local Player moves first and has

the dark-colored pieces.

C. Set the pieces of the local player to be at the bottom of the screen and the NetPlayer to

be at the top.

267



www.manaraa.com

ii. In the Player class,

A. Create a method for notifying the other player of the coordinates of a move or part of a

jump.

B. Create a method for accepting move/jump coordinates (from another player).

iii. In the NetPlayer class,

A. Create a constructor for setting up the NetPlayer as a client. This constructor must take

the server name as a parameter.

B. Create a constructor for setting up the NetPlayer as a server.

C. Override the setTurn method to handle 1) accepting coordinates over the network, 2)

translating them to be the right orientation for this board,and 3) performing them locally.

This process is continued until the turn is complete: when the word “end” is received. If

“end” is the first thing sent, the NetPlayer loses, and the local Player wins. Likewise, if

the local player can’t play, he loses, and the NetPlayer should transmit “end”.

D. If the network input does not line up with expected input, throw your own Exception

type.

E. Override “selectable” and “mustJump” to always return false. We will have only the

local player check moves, and the NetPlayer’s pieces are never movable locally.

D.6.21 Phase 17

Phase seventeen is a fully-functional, double-buffered, re-sizable, networked, GUI-based

checkers game that uses threading to prevent freezing during network communication. Required

knowledge: Threads.

(a) Threads

i. Concurrent programming is also known as multi-threaded programming. (p. 547)

ii. A thread is a single sequential flow of control within a program.

iii. Most conventional programming languages are single-threaded: handle only one task at any

given moment.

iv. Multi-threaded or concurrent programs have multiple threads running simultaneously.

v. Two ways to create threads: extend Thread or implement Runnable.

268



www.manaraa.com

vi. Life cycle (p. 554):

A. A thread is in the “new” state after creation before being started.

B. After the start() method is invoked, a thread is “alive.” While a thread is alive, it maybe

be “runnable” or “blocked.” A thread is blocked if it is waiting (for a notify), waiting to

join another thread, or sleeping.

C. Multi-threaded programs run the risk of “race conditions.” To prevent these conditions,

methods in Java can be declared “synchronized,” in order to prevent more than one thread

from executing at the same time.

vii. In order to allow regular functionality (e.g. resizing) while waiting for another player’s play,

the players should be threads. By being Threads, Player waits do not affect the rest of the

system.

viii. Player (and therefore NetPlayer) will become a Thread. That is, Player inherits from Thread.

(b) Steps to allow threads:

i. In Player,

A. Have Player extend thread.

B. Override the synchronizedrun method to wait as long as the game is not over and it’s

not his turn. When it is the human player’s turn, if the he can play, the thread waits again

to be notified of a play by the human player.

C. When the turn is set for this player,notify this waiting thread to wake up and realize it

is his turn.

ii. In Checkers, before setting turns, start both threads.

D.6.22 Phase 18

Phase eighteen is a fully-functional, double-buffered, resize-able, networked, multi-threaded, GUI-

based chess game with all typical moves. Detecting checkmate and stalemate are not required yet. Required

knowledge: loading images, chess moves.

1. WritePiece to be an abstract base class.

(a) Have the image for the piece retrieved at initialization.

(b) Create methods for getting and setting the piece location.

269



www.manaraa.com

(c) Create a method checking if a piece is selectable.

(d) Create a method for checking if a move is valid.

(e) Create a method for performing a move.

(f) Create a method for drawing the piece.

2. WriteKnight to extend and override Piece as needed to define Knight moves:two vertical steps and a

horizontal step, or one vertical step and two horizontal steps terminating on a square not occupied by a

piece of the same color.

3. WriteBishop to extend and override Piece as needed to define Bishop moves:any number of unob-

structed, diagonal steps in one direction terminating on a spot not occupied by a piece of the same

color.

4. Write Queen to extend and override Piece as needed to define Queen moves: any number of unob-

structed steps in any single direction terminating on a spotnot occupied by a piece of the same color.

5. Write King to extend and override Piece as needed to define King moves: One step in any direction

terminating on a spot not occupied by a piece of the same color.

6. WriteRook to extend and override Piece as needed to define Rook moves: Any number of unobstructed

steps in either the vertical or horizontal direction terminating on a spot not occupied by a piece of the

same color.

7. WritePawn to extend and override Piece as needed to define Pawn moves:

(a) One step forward vertically to an empty spot.

(b) One diagonal step forward to a spot holding an opponent’spiece.

(c) If the pawn has never been moved, two unobstructed steps vertically forward to an empty spot.

D.6.23 Phase 19

Phase nineteen is a fully-functional, double-buffered, resize-able, networked, multi-threaded, GUI-

based chess game with special moves (en-passant, castling,and pawn promotion). Detecting checkmate and

stalemate are not required yet.

270



www.manaraa.com

1. Castling: consists of the king’s moving horizontally twosteps toward his rook, and the rook’s moving

to the spot the king passed through. Castling can be done if

(a) The King has never been moved.

(b) The involved Rook has never been moved.

(c) There are no pieces between the King and the Rook.

(d) The squares the King is on, will pass through, and ends on are not in check.

(e) The King and the Rook are in the same row.

2. Rook: Castling accommodation.

3. Pawn:

(a) If a pawn is horizontally next to an opponent’s pawn that double movedon the previous turn,

allow the “en-passant” capture diagonally forward above the double-moved pawn. The double-

moved pawn is captured.

(b) If a pawn reaches the last row of the board, promote the pawn to a queen. (Allowing the choice

of promotion to a rook, bishop, knight, or queen is optional.)

D.6.24 Phase 20

Phase twenty is a fully-functional, double-buffered, resize-able, networked, multi-threaded, GUI-

based chess game that notifies on checkmate and stalemate. Required knowledge: Checkmate and stalemate

rules.

1. Update thePiece class:

(a) Create a method for checking if this piece has any valid moves. NOTE: a move is not valid if it

causes one’s own king to be in check.

(b) Create a method for undoing a move.

2. Update thePlayer class:

(a) Create a reference to its king.

(b) Create a method for determining if the king is “in check.”The king is in check if any of the

opponent’s pieces has a valid move to the king’s location.

271



www.manaraa.com

(c) Create a way for determining if this player is “check-mated.” A player is check-mated if it is

already in check, and none of its pieces have valid moves thatwill leave king out of check.

(d) Create a way for determining if this player is “stale-mated.” A player (and thus the game) is stale-

mated if the king is NOT in check but none of this player’s pieces have valid moves for taking the

king out of check.

(e) Display a notification when a Player is check-mated. A Player is check-mated if he is already in

check, and no valid move by any of his Pieces will take him out of check.

(f) Display a notification when a Player is stale-mated (considered a tie). A Player is stale-mated if

he is NOT in check, but all valid moves put him in check.

(g) Identification of stalemates resulting from threefold repetition and the fifty move rule is optional.

272



www.manaraa.com

Bibliography

[1] David Arnow and Oleg Barshay. On-line programming examinations using web to teach. InITiCSE
‘99: Proceedings of the 4th annual SIGCSE/SIGCUE ITiCSE conference on Innovation and technology
in computer science education, pages 21–24, New York, NY, USA, 1999. ACM Press.

[2] Owen Astrachan and Susan H. Rodger. Animation, visualization, and interaction in cs 1 assignments.
In SIGCSE ‘98: Proceedings of the twenty-ninth SIGCSE technical symposium on Computer science
education, pages 317–321, New York, NY, USA, 1998. ACM Press.

[3] Doug Baldwin. Teaching introductory computer science as the science of algorithms. InSIGCSE ‘90:
Proceedings of the twenty-first SIGCSE technical symposiumon Computer science education, pages
58–62, New York, NY, USA, 1990. ACM Press.

[4] Catherine C. Bareiss. A semester project for cs1. InSIGCSE ‘96: Proceedings of the twenty-seventh
SIGCSE technical symposium on Computer science education, pages 310–314, New York, NY, USA,
1996. ACM Press.

[5] H.S. Barrows and R. M. Tambly.Problem-Based Learning: An Approach to Medical Education.
Springer Publishing Company, New York, 1980.

[6] Mordechai Ben-Ari. Constructivism in computer scienceeducation. InSIGCSE ‘98: Proceedings of
the twenty-ninth SIGCSE technical symposium on Computer science education, pages 257–261, New
York, NY, USA, 1998. ACM Press.

[7] C. Bereiter and M. Scardamalia.Intentional learning as a goal of instruction. Erlbaum Associates,
Hillsdale, NJ, USA, 1989.

[8] Kim B. Bruce. Controversy on how to teach cs 1: a discussion on the sigcse-members mailing list.
In ITiCSE-WGR ‘04: Working group reports from ITiCSE on Innovation and technology in computer
science education, pages 29–34, New York, NY, USA, 2004. ACM Press.

[9] Kevin R. Burger. Teaching two-dimensional array concepts in java with image processing examples. In
SIGCSE ‘03: Proceedings of the 34th SIGCSE technical symposium on Computer science education,
pages 205–209, New York, NY, USA, 2003. ACM Press.

[10] Lawrence Cavedon, James Harland, and Lin Padgham. Problem based learning with technological
support in an ai subject: description and evaluation. InACSE ‘97: Proceedings of the 2nd Australasian
conference on Computer science education, pages 191–200, New York, NY, USA, 1996. ACM Press.

[11] Mel Ò Cinnèide and Richard Tynan. A problem-based approach to teaching design patterns. InITiCSE-
WGR ‘04: Working group reports from ITiCSE on Innovation andtechnology in computer science
education, pages 80–82, New York, NY, USA, 2004. ACM Press.

[12] Steve Cunningham. Graphical problem solving and visual communication in the beginning computer
graphics course. InSIGCSE ‘02: Proceedings of the 33rd SIGCSE technical symposium on Computer
science education, pages 181–185, New York, NY, USA, 2002. ACM Press.

273



www.manaraa.com

[13] Steve Cunningham and Angela B. Shiflet. Computer graphics in undergraduate computational science
education. InSIGCSE ‘03: Proceedings of the 34th SIGCSE technical symposium on Computer science
education, pages 372–375, New York, NY, USA, 2003. ACM Press.

[14] Timothy Davis, Robert Geist, Sarah Matzko, and James Westall. Course development underτέχνη. In
Eurographics ‘04: Proceedings of Eurographics 2004, pages 23–27, New York, NY, USA, 2004. ACM
Press.

[15] Timothy Davis, Robert Geist, Sarah Matzko, and James Westall. τέχνη: a first step. InSIGCSE ‘04:
Proceedings of the 35th SIGCSE technical symposium on Computer science education, pages 125–129,
New York, NY, USA, 2004. ACM Press.

[16] Timothy Davis, Robert Geist, Sarah Matzko, and James Westall. τέχνη: trial phase for the new cur-
riculum. InSIGCSE ‘07: Proceedings of the 38th SIGCSE technical symposium on Computer science
education, pages 415–419, New York, NY, USA, 2007. ACM Press.

[17] Timothy A. Davis. Graphics-based learning in first-year computer science. InEurographics ‘06: Pro-
ceedings of Eurographics 2006, New York, NY, USA, 2006. ACM Press.

[18] Timothy A. Davis and Edward W. Davis. Exploiting frame coherence with the temporal depth buffer
in a distributed computing environment. InPVGS ‘99: Proceedings of the 1999 IEEE symposium on
Parallel visualization and graphics, pages 29–38, New York, NY, USA, 1999. ACM Press.

[19] Rick Decker and Stuart Hirshfield. The top 10 reasons whyobject-oriented programming can’t be
taught in cs 1. InSIGCSE ‘94: Proceedings of the twenty-fifth SIGCSE symposium on Computer science
education, pages 51–55, New York, NY, USA, 1994. ACM Press.

[20] Adair Dingle and Carol Zander. Assessing the ripple effect of cs1 language choice. InProceedings
of the second annual CCSC on Computing in Small Colleges Northwestern conference, pages 85–93, ,
USA, 2000. Consortium for Computing Sciences in Colleges.

[21] Barbara Duch, Susan Gron, and Deborah Allen.The power of problem-based learning. Stylus Publish-
ing, LLC, Sterling, VA, 2001.

[22] Andrew T. Duchowski and Timothy A. Davis. Teaching algorithms and data structures through graphics.
In Eurographics ‘07: Proceedings of Eurographics 2007, New York, NY, USA, 2007. ACM Press.

[23] Harriet J. Fell and Viera K. Proulx. Exploring martian planetary images: C++ exercises for cs1. In
SIGCSE ‘97: Proceedings of the twenty-eighth SIGCSE technical symposium on Computer science
education, pages 30–34, New York, NY, USA, 1997. ACM Press.

[24] Ronald A. Fisher.The Design of Experiments, 8th edition. Hafner Publishing Company, New York,
USA, 1966.

[25] Ahmad Ghafarian. Teaching design effectively in the introductory programming courses. InCCSC ‘00:
Proceedings of the fourteenth annual consortium on Small Colleges Southeastern conference, pages
201–208, , USA, 2000. Consortium for Computing Sciences in Colleges.

[26] Ahmad Ghafarian. Incorporating a semester-long project into the cs 2 course.J. Comput. Small Coll.,
17(2):183–190, 2001.

[27] Andrew S. Glassner.An introduction to ray tracing. Academic Press Ltd., London, UK, 1989.

[28] Tony Greening, Judy Kay, Jeffrey H. Kingston, and Kathryn Crawford. Results of a pbl trialin first-year
computer science. InACSE ‘97: Proceedings of the 2nd Australasian conference onComputer science
education, pages 201–206, New York, NY, USA, 1996. ACM Press.

274



www.manaraa.com

[29] Brian Hanks, Charlie McDowell, David Draper, and Milovan Krnjajic. Program quality with pair pro-
gramming in cs1. InITiCSE ‘04: Proceedings of the 9th annual SIGCSE conferenceon Innovation and
technology in computer science education, pages 176–180, New York, NY, USA, 2004. ACM Press.

[30] Simon Holland, Robert Griffiths, and Mark Woodman. Avoiding object misconceptions. InSIGCSE
‘97: Proceedings of the twenty-eighth SIGCSE technical symposium on Computer science education,
pages 131–134, New York, NY, USA, 1997. ACM Press.

[31] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald,and Werner Stuetzle. Surface recon-
struction from unorganized points. InSIGGRAPH ‘92: Proceedings of the 19th annual conference on
Computer graphics and interactive techniques, pages 71–78, New York, NY, USA, 1992. ACM Press.

[32] Chenglie Hu. Rethinking of teaching objects-first.Education and Information Technologies, 9(3):209–
218, 2004.

[33] John Hunt and Sarah Matzko. Retooling a curriculum.Accepted to J. Comput. Small Coll., 2007.

[34] Kenny Hunt. Using image processing to teach cs1 and cs2.SIGCSE Bull., 35(4):86–89, 2003.

[35] Ricardo Jimènez-Peris, Sami Khuri, and Marta Pati˜no-Martı̀nez. Adding breadth to cs1 and cs2 courses
through visual and interactive programming projects. InSIGCSE ‘99: The proceedings of the thirtieth
SIGCSE technical symposium on Computer science education, pages 252–256, New York, NY, USA,
1999. ACM Press.

[36] D. Johnson and R. Johnson.Learning Together and Alone. Allyn and Bacon, Needham Heights, MA, 5
edition, 1999.

[37] Immanuel Kant.Critique of Pure Reason. St. Martin’s Press, New York, USA, 1965.

[38] Neha Katira, Laurie Williams, Eric Wiebe, Carol Miller, Suzanne Balik, and Ed Gehringer. On under-
standing compatibility of student pair programmers. InSIGCSE ‘04: Proceedings of the 35th SIGCSE
technical symposium on Computer science education, pages 7–11, New York, NY, USA, 2004. ACM
Press.

[39] Brian W. Kernighan and Dennis M. Ritchie.The C Programming Language. Prentice Hall, PTR, Upper
Saddle River, NJ, USA, 2 edition, 1988.

[40] Andrew Koenig. C traps and pitfalls. Computing ScienceTechnical Report 123, AT&T Bell Laborato-
ries, Murray Hill, NJ, July 1 1986.

[41] Michael Kölling, Bett Koch, and John Rosenberg. Requirements for a first year object-oriented teaching
language. InSIGCSE ‘95: Proceedings of the twenty-sixth SIGCSE technical symposium on Computer
science education, pages 173–177, New York, NY, USA, 1995. ACM Press.

[42] John L. Kundert-Gibbs.Maya: Secrets of the Pros. SYBEX Inc., Alameda, CA, USA, 2002.

[43] Gilbert W. Laware and Andrew J. Walters. Real world problems bringing life to course content. In
CITC5 ‘04: Proceedings of the 5th conference on Informationtechnology education, pages 6–12, New
York, NY, USA, 2004. ACM Press.

[44] Pete Lee and Chris Phillips. Programming versus design(poster): teaching first year students. In
ITiCSE ‘98: Proceedings of the 6th annual conference on the teaching of computing and the 3rd annual
conference on Integrating technology into computer science education, page 289, New York, NY, USA,
1998. ACM Press.

[45] Paul M. Leonardi. The mythos of engineering culture: A study of communicative performances and
interaction. Master’s thesis, Boulder, CO, USA, 2003.

275



www.manaraa.com

[46] Raymond Lister, Anders Berglund, Tony Clear, Joe Bergin, Kathy Garvin-Doxas, Brian Hanks, Lew
Hitchner, Andrew Luxton-Reilly, Kate Sanders, Carsten Schulte, and Jacqueline L. Whalley. Research
perspectives on the objects-early debate. InITiCSE-WGR ‘06: Working group reports on ITiCSE on
Innovation and technology in computer science education, pages 146–165, New York, NY, USA, 2006.
ACM Press.

[47] Margaret Martinez. Designing intentional learning environments. InSIGDOC ‘97: Proceedings of
the 15th annual international conference on Computer documentation, pages 173–180, New York, NY,
USA, 1997. ACM Press.

[48] Sarah Matzko, Peter J. Clarke, Tanton H. Gibbs, Brian A.Malloy, James F. Power, and Rosemary
Monahan. Reveal: a tool to reverse engineer class diagrams.In CRPIT ‘02: Proceedings of the For-
tieth International Conference on Tools Pacific, pages 13–21, Darlinghurst, Australia, Australia, 2002.
Australian Computer Society, Inc.

[49] Sarah Matzko and Timothy Davis. Pair design in undergraduate labs.J. Comput. Small Coll., 22(2):123–
130, 2006.

[50] Sarah Matzko and Timothy Davis. Using graphics research to teach freshman computer science. In
SIGGRAPH ‘06: ACM SIGGRAPH 2006 Educators program, page 9, New York, NY, USA, 2006.
ACM Press.

[51] Sarah Matzko and Timothy A. Davis. Teaching cs1 with graphics and c. InITICSE ‘06: Proceedings
of the 11th annual SIGCSE conference on Innovation and technology in computer science education,
pages 168–172, New York, NY, USA, 2006. ACM Press.

[52] Alasdair McAndrew and Anne Venables. A ”secondary” look at digital image processing. InSIGCSE
‘05: Proceedings of the 36th SIGCSE technical symposium on Computer science education, pages 337–
341, New York, NY, USA, 2005. ACM Press.

[53] Charlie McDowell, Linda Werner, Heather E. Bullock, and Julian Fernald. The impact of pair pro-
gramming on student performance, perception and persistence. In ICSE ‘03: Proceedings of the 25th
International Conference on Software Engineering, pages 602–607, Washington, DC, USA, 2003. IEEE
Computer Society.

[54] Emilia Mendes, Lubna Basil Al-Fakhri, and Andrew Luxton-Reilly. Investigating pair-programming
in a 2nd-year software development and design computer science course. InITiCSE ‘05: Proceedings
of the 10th annual SIGCSE conference on Innovation and technology in computer science education,
pages 296–300, New York, NY, USA, 2005. ACM Press.

[55] Barbara Moskal, Deborah Lurie, and Stephen Cooper. Evaluating the effectiveness of a new instructional
approach. InSIGCSE ‘04: Proceedings of the 35th SIGCSE technical symposium on Computer science
education, pages 75–79, New York, NY, USA, 2004. ACM Press.

[56] F. Musgrave. Grid tracing: Fast ray tracing for height fields. Technical Report RR-639, Yale University,
Dept. of Comp. Sci., July 1988.

[57] M. A. Pèrez-Qui˜nones, Steven Edwards, Claude Anderson, Doug Baldwin, JamesCaristi, and Paul J.
Wagner. Transitioning to an objects-early three-course introductory sequence: issues and experiences.
In SIGCSE ‘04: Proceedings of the 35th SIGCSE technical symposium on Computer science education,
pages 499–500, New York, NY, USA, 2004. ACM Press.

[58] Jean Piaget.The development of thought: equilibration of cognitive structures (translated by A. Rosin).
Viking Press, New York, USA, 1977.

276



www.manaraa.com

[59] Margaret M. Reek. A top-down approach to teaching programming. InSIGCSE ‘95: Proceedings of
the twenty-sixth SIGCSE technical symposium on Computer science education, pages 6–9, New York,
NY, USA, 1995. ACM Press.

[60] Erik Reinhard, Michael Ashikhmin, Bruce Gooch, and Peter Shirley. Color transfer between images.
IEEE Comput. Graph. Appl., 21(5):34–41, 2001.

[61] James Robergè. Creating programming projects with visual impact. InSIGCSE ‘92: Proceedings of the
twenty-third SIGCSE technical symposium on Computer science education, pages 230–234, New York,
NY, USA, 1992. ACM Press.

[62] Eric Roberts. The dream of a common language: the searchfor simplicity and stability in computer
science education. InSIGCSE ‘04: Proceedings of the 35th SIGCSE technical symposium on Computer
science education, pages 115–119, New York, NY, USA, 2004. ACM Press.

[63] Eric S. Roberts. Using c in cs1: evaluating the stanfordexperience. InSIGCSE ‘93: Proceedings of
the twenty-fourth SIGCSE technical symposium on Computer science education, pages 117–121, New
York, NY, USA, 1993. ACM Press.

[64] Nathan Rountree, Janet Rountree, Anthony Robins, and Robert Hannah. Interacting factors that predict
success and failure in a cs1 course. InITiCSE-WGR ‘04: Working group reports from ITiCSE on
Innovation and technology in computer science education, pages 101–104, New York, NY, USA, 2004.
ACM Press.

[65] Jean-Jacques Rousseau.Emile, or On Education. Paris, France, 1762.

[66] Keith Rule.3D graphics file formats: a programmer’s reference. Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA, 1996.

[67] G. Michael Schneider. A model for a three course introductory sequence.SIGCSE Bull., 36(2):40–43,
2004.

[68] E. Seymour and N. Hewitt.Talking about leaving: Why Undergraduates Leave the Sciences. Westview
Press, Boulder, CO, USA, 1997.

[69] Rahman Tashakkori. Encouraging undergraduate research: a digital image processing approach.J.
Comput. Small Coll., 20(3):173–180, 2005.

[70] Joseph A. Turner and Joseph L. Zachary. Using course-long programming projects in cs2. InSIGCSE
‘99: The proceedings of the thirtieth SIGCSE technical symposium on Computer science education,
pages 43–47, New York, NY, USA, 1999. ACM Press.

[71] L. S. Vygotsky.Mind in Society: The Development of Higher Psychological Processes. Harvard Univ.
Press, Cambridge, MA, USA, 1978.

[72] S. Walker and B. Fraser. Development and validation of an instrument for assessing distance education
learning environments in higher education.Learning Environments Research, 8:289–308, 2005.

[73] Kent White. A comprehensive cmps ii semester project.SIGCSE Bull., 35(2):70–73, 2003.

[74] Richard Wicentowski and Tia Newhall. Using image processing projects to teach cs1 topics. InSIGCSE
‘05: Proceedings of the 36th SIGCSE technical symposium on Computer science education, pages 287–
291, New York, NY, USA, 2005. ACM Press.

[75] Laurie Williams, Robert R. Kessler, Ward Cunningham, and Ron Jeffries. Strengthening the case for
pair programming.IEEE Softw., 17(4):19–25, 2000.

277



www.manaraa.com

[76] Laurie Williams and Richard L. Upchurch. In support of student pair-programming. InSIGCSE ‘01:
Proceedings of the thirty-second SIGCSE technical symposium on Computer Science Education, pages
327–331, New York, NY, USA, 2001. ACM Press.

[77] Rosalee Wolfe. New possibilities in the introductory graphics course for computer science majors.
SIGGRAPH Comput. Graph., 33(2):35–39, 1999.

[78] Craig Zilles. Spimbot: an engaging, problem-based approach to teaching assembly language program-
ming. In SIGCSE ‘05: Proceedings of the 36th SIGCSE technical symposium on Computer science
education, pages 106–110, New York, NY, USA, 2005. ACM Press.

278


